local cohomology with support in determinantal ideals
play

Local cohomology with support in determinantal ideals Claudiu Raicu - PowerPoint PPT Presentation

Local cohomology with support in determinantal ideals Claudiu Raicu and Jerzy Weyman Fort Collins, August 2013 Resolutions Example I 2 = 2 2 minors of a 3 3 matrix . S = Sym ( C 3 C 3 ) . 1 . . . . ( S / I 2 ) : . 9 16


  1. Local cohomology with support in determinantal ideals Claudiu Raicu ∗ and Jerzy Weyman Fort Collins, August 2013

  2. Resolutions Example I 2 = 2 × 2 minors of a 3 × 3 matrix . S = Sym ( C 3 ⊗ C 3 ) . 1 . . . . β ( S / I 2 ) : . 9 16 9 . . . . . 1

  3. Resolutions Example I 2 = 2 × 2 minors of a 3 × 3 matrix . S = Sym ( C 3 ⊗ C 3 ) . 1 . . . . β ( S / I 2 ) : . 9 16 9 . . . . . 1 More generally, I p = p × p minors of m × n matrix, S = Sym ( C m ⊗ C n ) . β ( S / I p ) : Lascoux, J´ ozefiak, Pragacz, Weyman ’80 . Feature: I p is a GL m × GL n –representation. Assume m ≥ n .

  4. Resolutions Example I 2 = 2 × 2 minors of a 3 × 3 matrix . S = Sym ( C 3 ⊗ C 3 ) . 1 . . . . β ( S / I 2 ) : . 9 16 9 . . . . . 1 More generally, I p = p × p minors of m × n matrix, S = Sym ( C m ⊗ C n ) . β ( S / I p ) : Lascoux, J´ ozefiak, Pragacz, Weyman ’80 . Feature: I p is a GL m × GL n –representation. Assume m ≥ n . � S x C m ⊗ S x C n . S = Cauchy’s formula: x =( x 1 ≥ x 2 ≥···≥ x n ) � p � p � � C m ⊗ � S ( 1 p ) C m ⊗ S ( 1 p ) C n � C n I p = = .

  5. The ideals I x � I x = ( S x C m ⊗ S x C n ) = S y C m ⊗ S y C n . x ⊂ y [De Concini–Eisenbud–Procesi ’80]

  6. The ideals I x � I x = ( S x C m ⊗ S x C n ) = S y C m ⊗ S y C n . x ⊂ y [De Concini–Eisenbud–Procesi ’80] Problem Compute the resolution of all I x .

  7. The ideals I x � I x = ( S x C m ⊗ S x C n ) = S y C m ⊗ S y C n . x ⊂ y [De Concini–Eisenbud–Procesi ’80] Problem Compute the resolution of all I x . Example m = n = 3, I x = I ( 2 , 2 ) . 1 . . . . . . . . . . . . . . . . . . . . β ( S / I 2 , 2 ) : . 36 90 84 36 9 1 . . . . . . . . . . . 1 . .

  8. Regularity of the ideals I x Unfortunately, we don’t know how to compute β ( S / I x ) for arbitrary x ! Question What about the regularity? Effective bounds?

  9. Regularity of the ideals I x Unfortunately, we don’t know how to compute β ( S / I x ) for arbitrary x ! Question What about the regularity? Effective bounds? Theorem (–, Weyman ’13) ( n · ( x p − p ) + p 2 + 2 · ( p − 1 ) · ( n − p )) . reg ( I x ) = max p = 1 , ··· , n x p > x p + 1 In particular, the only ideals I x which have a linear resolution are those for which x 1 = · · · = x n or x 1 − 1 = x 2 = · · · = x n .

  10. Regularity of the ideals I x Unfortunately, we don’t know how to compute β ( S / I x ) for arbitrary x ! Question What about the regularity? Effective bounds? Theorem (–, Weyman ’13) ( n · ( x p − p ) + p 2 + 2 · ( p − 1 ) · ( n − p )) . reg ( I x ) = max p = 1 , ··· , n x p > x p + 1 In particular, the only ideals I x which have a linear resolution are those for which x 1 = · · · = x n or x 1 − 1 = x 2 = · · · = x n . Example For m = n = 3, reg ( I ( 1 , 1 ) ) = 3 , reg ( I ( 2 , 2 ) ) = 6 .

  11. Local cohomology The ˇ Cech complex C • ( f 1 , · · · , f t ) is defined by � � 0 − → S − → S f i − → S f i f j − → · · · − → S f 1 ··· f t − → 0 . 1 ≤ i ≤ t 1 ≤ i < j ≤ t

  12. Local cohomology The ˇ Cech complex C • ( f 1 , · · · , f t ) is defined by � � 0 − → S − → S f i − → S f i f j − → · · · − → S f 1 ··· f t − → 0 . 1 ≤ i ≤ t 1 ≤ i < j ≤ t For I = ( f 1 , · · · , f t ) , i ≥ 0, the local cohomology modules H i I ( S ) are defined by H i I ( S ) = H i ( C • ( f 1 , · · · , f t )) .

  13. Local cohomology The ˇ Cech complex C • ( f 1 , · · · , f t ) is defined by � � 0 − → S − → S f i − → S f i f j − → · · · − → S f 1 ··· f t − → 0 . 1 ≤ i ≤ t 1 ≤ i < j ≤ t For I = ( f 1 , · · · , f t ) , i ≥ 0, the local cohomology modules H i I ( S ) are defined by H i I ( S ) = H i ( C • ( f 1 , · · · , f t )) . Problem Compute H • I ( S ) for all I

  14. Local cohomology The ˇ Cech complex C • ( f 1 , · · · , f t ) is defined by � � 0 − → S − → S f i − → S f i f j − → · · · − → S f 1 ··· f t − → 0 . 1 ≤ i ≤ t 1 ≤ i < j ≤ t For I = ( f 1 , · · · , f t ) , i ≥ 0, the local cohomology modules H i I ( S ) are defined by H i I ( S ) = H i ( C • ( f 1 , · · · , f t )) . Problem Compute H • I ( S ) for all I = I x .

  15. Local cohomology The ˇ Cech complex C • ( f 1 , · · · , f t ) is defined by � � 0 − → S − → S f i − → S f i f j − → · · · − → S f 1 ··· f t − → 0 . 1 ≤ i ≤ t 1 ≤ i < j ≤ t For I = ( f 1 , · · · , f t ) , i ≥ 0, the local cohomology modules H i I ( S ) are defined by H i I ( S ) = H i ( C • ( f 1 , · · · , f t )) . Problem Compute H • I ( S ) for all I = I x . Note that H • I ( S ) = H • √ I ( S ) , and � I x = I p , where p is the number of non-zero parts of x .

  16. Characters Problem For each p = 1 , · · · , n, determine H • I p ( S ) .

  17. Characters Problem For each p = 1 , · · · , n, determine H • I p ( S ) . I p ( S ) is an example of a doubly-graded module M j H • i , equivariant with respect to the action of GL m × GL n . i − → internal degree , j − → cohomological degree .

  18. Characters Problem For each p = 1 , · · · , n, determine H • I p ( S ) . I p ( S ) is an example of a doubly-graded module M j H • i , equivariant with respect to the action of GL m × GL n . i − → internal degree , j − → cohomological degree . For such M , we define the character χ M by � i ] · z i · w j , [ M j χ M ( z , w ) = i , j where [ M j i ] is the class of M j i in the representation ring of GL m × GL n .

  19. Dominant weights We define the set of dominant weights in Z r (for r = m or n ) dom = { λ ∈ Z r : λ 1 ≥ · · · ≥ λ r } . Z r

  20. Dominant weights We define the set of dominant weights in Z r (for r = m or n ) dom = { λ ∈ Z r : λ 1 ≥ · · · ≥ λ r } . Z r For λ ∈ Z n dom , s = 0 , 1 , · · · , n − 1 , let λ ( s ) = ( λ 1 , · · · , λ s , s − n , · · · , s − n , λ s + 1 + ( m − n ) , · · · , λ n + ( m − n )) . � �� � m − n For m > n , λ ( s ) is dominant if and only if λ s ≥ s − n and λ s + 1 ≤ s − m .

  21. Dominant weights We define the set of dominant weights in Z r (for r = m or n ) dom = { λ ∈ Z r : λ 1 ≥ · · · ≥ λ r } . Z r For λ ∈ Z n dom , s = 0 , 1 , · · · , n − 1 , let λ ( s ) = ( λ 1 , · · · , λ s , s − n , · · · , s − n , λ s + 1 + ( m − n ) , · · · , λ n + ( m − n )) . � �� � m − n For m > n , λ ( s ) is dominant if and only if λ s ≥ s − n and λ s + 1 ≤ s − m . The following Laurent power series are the key players in the description of H • I p ( S ) . � [ S λ ( s ) C m ⊗ S λ C n ] · z | λ | . h s ( z ) = λ ∈ Z n dom λ s ≥ s − n λ s + 1 ≤ s − m

  22. An example Take m = 11, n = 9, s = 5, λ = ( 4 , 2 , 1 , − 2 , − 3 , − 6 , − 8 , − 8 , − 10 ) . We have m − n = 2 and λ ( s ) = ( λ 1 , · · · , λ s , s − n , · · · , s − n , λ s + 1 + ( m − n ) , · · · , λ n + ( m − n )) � �� � m − n = ( 4 , 2 , 1 , − 2 , − 3 , − 4 , − 4 , − 4 , − 6 , − 6 , − 8 ) .

  23. An example Take m = 11, n = 9, s = 5, λ = ( 4 , 2 , 1 , − 2 , − 3 , − 6 , − 8 , − 8 , − 10 ) . We have m − n = 2 and λ ( s ) = ( λ 1 , · · · , λ s , s − n , · · · , s − n , λ s + 1 + ( m − n ) , · · · , λ n + ( m − n )) � �� � m − n = ( 4 , 2 , 1 , − 2 , − 3 , − 4 , − 4 , − 4 , − 6 , − 6 , − 8 ) . The coefficient of z − 30 in h s ( z ) involves (among other terms)                     C 11 C 9   ⊗                    

  24. Local cohomology with support in determinantal ideals Theorem (–, Weyman, Witt ’13) n − 1 � h s ( z ) · w 1 +( n − s ) · ( m − n ) . χ H • In ( S ) ( z , w ) = s = 0

  25. Local cohomology with support in determinantal ideals Theorem (–, Weyman, Witt ’13) n − 1 � h s ( z ) · w 1 +( n − s ) · ( m − n ) . χ H • In ( S ) ( z , w ) = s = 0 � a � We define the Gauss polynomial to be the generating function b � a � � � w t 1 + ··· + t a − b = p ( a − b , b ; c ) · w c , ( w ) = b b ≥ t 1 ≥ t 2 ≥···≥ t a − b ≥ 0 c ≥ 0 where p ( a − b , b ; c ) = # { t ⊢ c : t ⊂ ( b a − b ) } .

  26. Local cohomology with support in determinantal ideals Theorem (–, Weyman, Witt ’13) n − 1 � h s ( z ) · w 1 +( n − s ) · ( m − n ) . χ H • In ( S ) ( z , w ) = s = 0 � a � We define the Gauss polynomial to be the generating function b � a � � � w t 1 + ··· + t a − b = p ( a − b , b ; c ) · w c , ( w ) = b b ≥ t 1 ≥ t 2 ≥···≥ t a − b ≥ 0 c ≥ 0 where p ( a − b , b ; c ) = # { t ⊢ c : t ⊂ ( b a − b ) } . Theorem (–, Weyman ’13) p − 1 � n − s − 1 � � h s ( z ) · w ( n − p + 1 ) 2 +( n − s ) · ( m − n ) · ( w 2 ) . χ H • Ip ( S ) ( z , w ) = p − s − 1 s = 0

  27. Ext modules reg ( M ) = max {− r − j : Ext j S ( M , S ) r � = 0 } .

  28. Ext modules reg ( S / I x ) = max {− r − j : Ext j S ( S / I x , S ) r � = 0 } .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend