light quark mass dependence of the x 3872 in an effective
play

Light Quark Mass Dependence of the X ( 3872 ) in an Effective Field - PowerPoint PPT Presentation

Light Quark Mass Dependence of the X ( 3872 ) in an Effective Field Theory Yu Jia 1 , 2 M. Jansen 3 H.-W. Hammer 3 , 4 1 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China 2 Theoretical Physics Center for Science


  1. Light Quark Mass Dependence of the X ( 3872 ) in an Effective Field Theory Yu Jia 1 , 2 M. Jansen 3 H.-W. Hammer 3 , 4 1 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China 2 Theoretical Physics Center for Science Facilities, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China 3 Institut f¨ ur Kernphysik, Technische Universit¨ at Darmstadt, Darmstadt, Germany 4 ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum f¨ ur Schwerionenforschung GmbH, Darmstadt, Germany Based on: Jansen, Hammer, Jia, PRD 89 (2014)014033 International Workshop on Heavy Quarkonium 2014, CERN November 10-14, 2014 1/24

  2. Outline Introduction and Motivation 1 D 0 D ∗ 0 Scattering Amplitude XEFT and the ¯ 2 Binding Energy and Scattering Length 3 Conclusion and Outlook 4 2/24

  3. Introduction and Motivation First observation by the Belle Collaboration [Choi et al., 2003] Determination J PC = 1 ++ by LHCb [Aaij et al., 2013] [Chatrchyan et al., 2013] 3/24

  4. Introduction and Motivation Interpretations: tetraquark, charmonium, hadronic molecule Mass of the X (3872) close to D 0 D ∗ 0 threshold Particle Content of the X (3872) � ¯ 1 D 0 D ∗ 0 + D 0 ¯ D ∗ 0 � X = √ 2 Recent observation of a candidate for the X on the lattice [Prelovsek and Leskovec, 2013] Performed on rather small lattices for large quark masses Previous work: Unitarized heavy meson ChpT: no sensitivity to contact interactions [Wang and Wang, 2013] Non-relativistic Faddeev-type three-body equations: contact interactions essential [Baru et al., 2013] 4/24

  5. Basics of XEFT Universal properties due to small binding energy E X = m D ∗ + m D − M X = (0 . 17 ± 0 . 26) MeV Corrections calculable in XEFT [Fleming et al., 2007] Decay rate for X → D 0 ¯ D 0 π 0 as a function of E X 5/24

  6. Basics of XEFT Similar to KSW theory for NN scattering [Kaplan et al., 1998] Includes pions perturbatively Unnaturally large NNLO coefficients [Fleming et al., 2000] Nearness of D 0 D ∗ 0 hyperfine splitting and pion mass induces small mass scale µ 2 = ∆ 2 − m 2 π Mass scale µ , D ( ∗ )0 and pion momenta and binding momentum of same order Q ≪ m π , m D , m D ∗ Pions and D ( ∗ )0 mesons treated non-relativistically Integrated out charged D ( ∗ ) ± mesons Effective field theory: 1 / a suppression [Braaten and Kusunoki, 2004] Charmonium- hadronic molecule hybrid: charged states small contribution [Takizawa and Takeuchi, 2013] Takes finite width of the D ∗ 0 into account 6/24

  7. XEFT Lagrangian − → − →     ∇ 2 ∇ 2 L = D †  D + D †  D  i∂ 0 +  i∂ 0 + 2 m D ∗ 2 m D − → → − → −       ∇ 2 ∇ 2 ∇ 2 † D + ¯  ¯  π + ¯  ¯ D † D + π † D  i∂ 0 +  i∂ 0 +  i∂ 0 + + δ 2 m D ∗ 2 m D 2 m π g D D † · − → D · − → 1 � D † ¯ ∇ π † � ∇ π + ¯ + √ √ 2 m π + h.c. 2 f � ¯ � ¯ − C 0 � † · � D D + D ¯ D D + D ¯ D D 2 � ¯ � ¯ � † · + C 2 D ← → ∇ 2 D + D ← → ∇ 2 ¯ D D + D ¯ � D D + h.c. 16 � ¯ � ¯ − D 2 µ 2 � † · � D D + D ¯ D D + D ¯ D D + . . . , 2 7/24

  8. Power Counting in XEFT ∼ Q − 1 ∼ Q − 2 - iC 0 ∼ Q 0 ∼ Q 5 - iC 2 p 2 ∼ Q 0 ∼ Q 1 - i g 1 √ 2 m π ( ε · p π ) √ - iD 2 µ 2 2 f 8/24

  9. LO Scattering Amplitude i A - 1 = = + - iC 0 D 0 D ∗ 0 scattering amplitude to LO ¯ 2 π i 1 i A − 1 = − γ + √− 2 M DD ∗ E − i ǫ M DD ∗ 2 π γ ≡ M DD ∗ C 0 (Λ) + Λ γ 2 Pole at − E = 2 M DD ∗ 9/24

  10. NLO Contributions to the Scattering Amplitude (I) (V) i A i A 0 0 i A 0 = + - iC 2 p 2 - iD 2 µ 2 (II) (III) (IV) i A i A i A 0 0 0 + + 2 + = + 10/24

  11. Infrared Divergences in XEFT (VI) i A = 0 � 2 = ig 2 p ( i Λ − µ ) µ 2 1 � M DD ∗ i A (VI) A 2 0 − 1 6 f 2 2 2 π Infrared divergent Renormalization scale dependent Pion bubbles give contribution to the D ∗ self energy 11/24

  12. Resummation for the D ∗ 0 Propagator iG = = + Σ OS Full D ∗ 0 propagator i iG = p 0 − p 2 / 2 m D ∗ + Σ OS + i ǫ = = + i Σ OS Σ OS g 2 Σ OS = 24 π f 2 i µ 3 Purely imaginary for m π < ∆, induces decay width for D ∗ 0 Real valued for m π ≥ ∆, induces mass shift for D ∗ 0 12/24

  13. LO Scattering Amplitude i A - 1 = = + - iC 0 D 0 D ∗ 0 scattering amplitude to LO ¯ 2 π i 1 i A − 1 = − γ + √− 2 M DD ∗ E − i ǫ M DD ∗ 2 π γ ≡ M DD ∗ C 0 (Λ) + Λ γ 2 Pole at − E = 2 M DD ∗ 13/24

  14. LO Scattering Amplitude i A - 1 = = + - iC 0 D 0 D ∗ 0 scattering amplitude to LO ¯ 2 π i 1 i A − 1 = − γ + √− 2 M DD ∗ E − 2 M DD ∗ Σ os − i ǫ M DD ∗ 2 π γ ≡ M DD ∗ C 0 (Λ) + Λ γ 2 2 M DD ∗ +Σ os Pole at − E = 13/24

  15. NLO Contributions to the Scattering Amplitude (I) (V) i A i A 0 0 i A 0 = + - iC 2 p 2 - iD 2 µ 2 (II) (III) (IV) i A i A i A 0 0 0 + + 2 + = + 14/24

  16. NLO Contributions to the Scattering Amplitude (I) (V) i A i A 0 0 i A 0 = + - iC 2 p 2 - iD 2 µ 2 (II) (III) (IV) i A i A i A 0 0 0 + + 2 + = + 14/24

  17. NLO Scattering Amplitudes 2 π i 1 i A − 1 = − γ + η M DD ∗ 0 = − iC 2 � p 2 + 2 M DD ∗ Σ os − η + Λ � i A (I) A 2 − 1 C 2 − γ + Λ 0 = ig 2 1 + µ 2 1 − 4 p 2 � � �� i A (II) 4 p 2 log 0 6 f 2 µ 2 �� M DD ∗ = ig 2 ( − η + Λ) + i µ 2 � � 2 p i A (III) 2 p log 1 + A − 1 0 3 f 2 i η + µ − p 2 π � 2 = ig 2 � � � Λ � �� � M DD ∗ ( − η + Λ) 2 + µ 2 i A (IV) A 2 log + 1 + R − 1 0 6 f 2 2 η − i µ 2 π = − iD 2 µ 2 i A (V) A 2 0 − 1 C 2 0 − p 2 − 2 M DD ∗ Σ os − i ǫ � η ≡ R ≡ 1 � π + 2 � � � − γ E + log 4 3 2 15/24

  18. One-Pion Exchange ij = ig 2 ( ε i · p π ) ( ε j · p π ) A (II) i ˆ 0 2 f 2 p 2 π − µ 2 → δ ij · ig 2 1 + µ 2 1 − 4 p 2 � � �� S-wave ≡ δ ij · i A (II) π − − − − log 0 6 f 2 4 p 2 µ 2 π Seperate amplitudes ˆ A ij = δ ij · A 16/24

  19. Effective Range Expansion Relation between scattering amplitude and S-matrix S − 1 = e 2 i δ s − 1 = i pM DD ∗ A π Apply effective range expansion M DD ∗ A = − 1 2 π + 1 2 r s p 2 + . . . p cot δ s = ip + a s OPE in coordinate space oscillatory [Suzuki, 2005] ig 2 ( ε i · p π ) ( ε j · p π ) 2 f 2 p 2 π − µ 2 → ig 2 r )) cos ( µ r ) + µ r sin ( µ r ) F.T. − − 8 π f 2 ( ε i · ε j − 3 ( ε i · ˆ r ) ( ε j · ˆ + . . . r 3 Effective range expansion only valid up to order p 0 17/24

  20. Suppression of the Two-Pion Exchange ∼ g 2 M DD ∗ µ × 4 πf 2 Expansion factor in KSW for NN scattering � ph � g 2 A M N m π ∼ 0 . 5 [Kaplan et al., 1998] 8 π f 2 Expansion factor in XEFT for DD ∗ scattering � ph � g 2 M DD ∗ µ ∼ 0 . 05 [Fleming et al., 2007] 4 π f 2 Quark mass dependent → estimate range of validity 18/24

  21. Expansion factor 0.15 � 4 πf 2 � 0.1 g 2 M DD ∗ | µ | / 0.05 m 2 m π = ∆ π 0 π ) 2 ( m ph 1.0 1.5 2.0 19/24

  22. Results for the Binding Energy 0.4 0.3 E X [MeV] 0.2 0.1 0 m 2 m π = ∆ π π ) 2 ph ( m 1.0 1.5 2.0 Red: LO contact interaction and OPE only Bounds: Natural ranges for NLO coefficients Green: Unnaturally large NLO coefficient 20/24

  23. Results for the Scattering Length 13 11 a s [fm] 9 10.5 7 10.4 5 10.3 1.102 1.108 1.114 m 2 m π = ∆ π 3 π ) 2 ( m ph 1.0 1.5 2.0 Red: LO contact interaction and OPE only Bounds: Natural ranges for NLO coefficients 21/24

  24. Conclusion and Outlook Conclusion XEFT applicable to calculate chiral extrapolations analytically Quark mass dependent contact interaction essential for renormalization X (3872) should be observable on the lattice High sensitivity of scattering length (cusp effect) Qualitative agreement with results from non-relativistic Faddeev-type three-body equations [Baru et al., 2013] Discrepancy with results from unitarized heavy meson ChpT [Wang and Wang, 2013] Outlook Extension to NNLO; Inclusion of charged D -mesons Relativistic pion fields for extrapolation to chiral limit Calculation of finite volume effects 22/24

  25. Outlook Outlook: finite volume effects Binding energy of the X , E X � 0 . 5 MeV ⇒ S -wave Scattering length a s � 5 fm Recent simulation on lattice with a spatial size L ≈ 2 fm [Prelovsek and Leskovec, 2013] Finite volume corrections essential Periodic boundary conditions ⇒ allowed loop momenta q = 2 π n L , n ∈ Z d 3 q (2 π ) 3 → 1 � � Replace integrals by sums q = 2 π n L 3 L For m π ≫ ∆ use pw expansion to include effects of pions ⇒ analogous procedure as in pionless EFT [Beane et al., 2004] Close to and below threshold evaluate diagrams with pions explicitly 23/24

  26. Outlook E X � MeV � 4 3 2 1 0 25 L � fm � 5 10 15 20 m π = 135MeV Dots: Binding energy in the finite volume Lines: Binding energy in the infinite volume 24/24

  27. Renormalization of C 2 and D 2 C 2 = M DD ∗ r 0 2 ( C 0 ) 2 ≡ c 2 ( C 0 ) 2 2 π � Λ � 2 � D 2 = 6 f 2 � 2 π � � ( C 0 ) 2 d 2 + log − R g 2 µ ph M DD ∗ 25/24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend