studies of the x 3872 as a mixed molecule charmonium
play

Studies of the X(3872) as a mixed molecule-charmonium state in QCD - PowerPoint PPT Presentation

Studies of the X(3872) as a mixed molecule-charmonium state in QCD Sum Rules Carina M. Zanetti Universidade de So Paulo, Brazil XIV Hadron Spectroscopy 13-17/06/2011 - Mnchen, Germany The X(3872) State 2003 @ B + X ( 3872 ) K +


  1. Studies of the X(3872) as a mixed molecule-charmonium state in QCD Sum Rules Carina M. Zanetti Universidade de São Paulo, Brazil XIV Hadron Spectroscopy 13-17/06/2011 - München, Germany

  2. The X(3872) State ✦ 2003 @ B + → X ( 3872 ) K + → J / !" + " − K + ✦ Confirmation: M X = ( 3871 . 20 ± 0 . 39 ) MeV ! < 2 . 3MeV

  3. X(3872) in the Quark model Favored quantum 1 ++ (angular distribution 2 pions + γ J / ψ ) PC numbers J : (3 pion distrib. BaBar, but incompatible w/ 2 − + other properties) CQM predictions for 2 3 P 1 ( 3990 ) 3 3 P 1 ( 4290 ) charmonium states 1 ⁺⁺ Barnes & Godfrey PRD69 (2004) Strong isospin violation: ! ( X → J / "# + # − # 0 ) ! ( X → J / "# + # − ) = 1 . 0 ± 0 . 4 ± 0 . 3 Not a c-cbar state!

  4. X(3872) in the Quark model Favored quantum 1 ++ (angular distribution 2 pions + γ J / ψ ) PC numbers J : (3 pion distrib. BaBar, but incompatible w/ 2 − + other properties) CQM predictions for 2 3 P 1 ( 3990 ) 3 3 P 1 ( 4290 ) charmonium states 1 ⁺⁺ Barnes & Godfrey PRD69 (2004) Strong isospin violation: ! ( X → J / "# + # − # 0 ) ! ( X → J / "# + # − ) = 1 . 0 ± 0 . 4 ± 0 . 3 Large phase space Gamermann, Oset (2009) Not a c-cbar state!

  5. X(3872) quark structure Four-quark states: M ( D ∗ 0 D 0 ) = ( 3871 . 81 ± 0 . 36 ) MeV Close & Page (2004) Molecule with small biding energy Swanson(2006) Tetraquark Maiani et al (2005)

  6. Problems with the molecular picture B ( X → ! ( 2 S ) " ) = 3 . 4 ± 1 . 4 B ( X → !" ) Radiative decays: Swanson (2004) ! ( X → " ( 2 S ) # ) ∼ 4 × 10 − 3 ! ( X → "# ) Production cross section of a bound DD* state with biding energy as small as 0.25 MeV is much smaller than the cross section obtained from the CDF data C. Bignamini et al (2009) Evidences of a charmonium component.

  7. Objectives: ✦ Study the X(3872) as a mixed molecule- charmonium state in QCD Sum Rules ✦ Extraction of observables: mass, decay widths and production in B decays.

  8. QCD Sum Rules Fundamental assumption: Principal of duality Equivalence of quark and hadron description Phenomenological side: Theoretical side (OPE): Determination of Masses, couplings, form factors

  9. QCD Sum Rules s ₀ - continuum threshold Improving the matching: ! ( Q 2 ) → ! ( M 2 ) Borel transform M - Borel Mass 1 ) Pole > Continuum; Constrains on the 2 ) OPE Convergence; parameters M and s ₀ 3 ) Stability of the Borel Mass M

  10. X(3872) in QCD Sum Rules R.D. Matheus, S. Narison, Tetraquark M X = ( 3 . 92 ± 0 . 13 ) GeV M. Nielsen and J.-M. Richard, PRD75 (2007) S.H. Lee, M. Nielsen and U. Wiedner, Molecule M X = ( 3 . 87 ± 0 . 07 ) GeV arXiv:0803.1168 Widths: Navarra, Nielsen, PLB639 (02) 272 Narison, Navarra, Nielsen, PRD 83 (2011) 016004

  11. The mixed 2q+4q current µ ( x ) = sin ( ! ) j ( 4 q ) ( x )+ cos ( ! ) j ( 2 q ) J q Sugiyama et ( x ) µ µ al PRD (2007) D(0)D*(0) molecule (q=u,d): � � j ( 4 q ) 1 ( x ) = ( ¯ q a ( x ) ! 5 c a ( x ))( ¯ c b ( x ) ! µ q b ( x )) − ( ¯ q a ( x ) ! µ c a ( x ))) ¯ c b ( x ) ! 5 u b ( x )) µ √ 2 Charmonium 1 ⁺⁺ : 1 j ( 2 q ) ( x ) = 2 � q ¯ q � ( ¯ c a ( x ) ! µ ! 5 c a ( x )) √ 6

  12. The mass of the mixed state 5 ◦ ≤ ! ≤ 13 ◦ 2 . 6GeV 2 ≤ M 2 ≤ 3 . 0GeV 2 m X = ( 3 . 77 ± 0 . 18 ) GeV Matheus, Navarra, Nielsen & CMZ, PRD 80 (2009) 056002

  13. Decays of the X(3872) F = " + " − ( " + " − " 0 ) → V = # , $ X → J / ! V → J / ! F , V q, � ν ( q ) i M = � ψ ( p � ) V ( q ) | X ( p ) � = g X ψ V ε αβδγ p α � β ( p ) � ∗ δ ( p � ) � ∗ g XψV X γ ( q ) p = p � + q p, � α ( p ) J/ψ p � , � µ ( p � ) Narrow width approximation: p ( s ) ds ( X → J / " f ) = B V → F ! V m V d ! V ) 2 +( m V ! V ) 2 | M | 2 8 # m 2 ( s − m 2 # X � 2 ! ( X → J / "# + # − # 0 ) � g X "$ ! ( X → J / "# + # − ) = 0 . 118 g X "% g X ! V ➔ QCDSR for the vertex X J / ! V

  14. Decays of the X(3872) F = " + " − ( " + " − " 0 ) → V = # , $ X → J / ! V → J / ! F , V q, � ν ( q ) i M = � ψ ( p � ) V ( q ) | X ( p ) � = g X ψ V ε αβδγ p α � β ( p ) � ∗ δ ( p � ) � ∗ g XψV X γ ( q ) p = p � + q p, � α ( p ) J/ψ p � , � µ ( p � ) Narrow width approximation: p ( s ) ds ( X → J / " f ) = B V → F ! V m V d ! V ) 2 +( m V ! V ) 2 | M | 2 8 # m 2 ( s − m 2 # X

  15. Decays of the X(3872) F = " + " − ( " + " − " 0 ) → V = # , $ X → J / ! V → J / ! F , V q, � ν ( q ) i M = � ψ ( p � ) V ( q ) | X ( p ) � = g X ψ V ε αβδγ p α � β ( p ) � ∗ δ ( p � ) � ∗ g XψV X γ ( q ) p = p � + q p, � α ( p ) J/ψ p � , � µ ( p � ) Narrow width approximation: p ( s ) ds ( X → J / " f ) = B V → F ! V m V d ! V ) 2 +( m V ! V ) 2 | M | 2 8 # m 2 ( s − m 2 # X ! ( X → J / "# + # − # 0 ) ! ( X → J / "# + # − ) = 1 . 0 ± 0 . 4 ± 0 . 3

  16. Sum Rules for the vertex X J / ! V ✦ Three-point function: ✦ Currents: ✦ Sum Rule: ✦

  17. Mixed State [ ] ( cc ) + ( D ∗ 0 ¯ D ∗ 0 D 0 )+ ( D ∗ + ¯ D 0 − ¯ D − − ¯ D ∗− D + ) OPE: ! ( X → J / "# + # − # 0 ) ! ( X → J / "# + # − ) = 1 . 0 ± 0 . 4 ± 0 . 3

  18. Result for the width g X !" = g X !" ( − m 2 " ) = 5 . 4 ± 2 . 4 X → J / "# + # − # 0 � � = ( 9 . 3 ± 6 . 9 ) MeV ! 5 ◦ ≤ ! ≤ 13 ◦ ; " = 20 ◦

  19. Radiative decay J / ψ c c c X q γ q Matrix element describing the radiative decay : ! ( q ) q ' X ( p ) # µ " ( p � ) # & M ( X ( p ) → ! ( q ) J / " ( p � )) = e # $%&' # ( ( Ag µ % g ($ p · q + Bg µ % p $ q ( + Cg ($ p % q µ ) m 2 X Nielsen, CMZ, PRD 82 (2010)116002

  20. Radiative decay J / ψ c c c X q γ q Matrix element describing the radiative decay : ! ( q ) q ' X ( p ) # µ " ( p � ) # & M ( X ( p ) → ! ( q ) J / " ( p � )) = e # $%&' # ( ( Ag µ % g ($ p · q + Bg µ % p $ q ( + Cg ($ p % q µ ) m 2 X Nielsen, CMZ, PRD 82 (2010)116002

  21. Radiative decay J / ψ c c c X q γ q Matrix element describing the radiative decay : ! ( q ) q ' X ( p ) # µ " ( p � ) # & M ( X ( p ) → ! ( q ) J / " ( p � )) = e # $%&' # ( ( Ag µ % g ($ p · q + Bg µ % p $ q ( + Cg ($ p % q µ ) m 2 X A, B, C: Three couplings to be determined by the Sum Rules for the vertex X J/ ψ γ Nielsen, CMZ, PRD 82 (2010)116002

  22. Radiative decay QCD SUM RULES FOR THE VERTEX X J/ ψ γ : ✦ Three-point function: R d 4 x d 4 y e ip � · x e iq · y � 0 | T [ j $ µ ( x ) j % " ( y ) j † ! µ "# ( p , p � , q ) = X ( 0 )] | 0 � j ! µ = ¯ c a " µ c a j X µ ( x ) = cos ! J u µ ( x )+ sin ! J d µ ( x ) µ ( x ) = sin ! j ( 4 q ) ( x )+ cos ! j ( 2 q ) J q j " 3 ¯ ( x ) # = 2 u " # u − 1 d " # d + 2 3 ¯ 3 ¯ c " # c µ µ ✦ Phenomenological input: � ! ( p � ) | j " # ( q ) | X ( p ) � = i $ " # ( q ) M ( X ( p ) → " ( q ) J / ! ( p � ))

  23. QCDSR Results: The couplings A ( Q 2 ) = A 1 e − A 2 Q 2 A ( Q 2 = 0 ) = 18 . 65 ± 0 . 94; A = ( A + B )( Q 2 = 0 ) = − 0 . 24 ± 0 . 11; A + B = C ( Q 2 = 0 ) = − 0 . 843 ± 0 . 008 . C = 5 ◦ ≤ ! ≤ 13 ◦ ; " = 20 ◦ (Same angles)

  24. QCDSR Results: The decay width p ∗ 5 ( A + B ) 2 + m 2 � � $ X ( A + C ) 2 ! ( X → J / " # ) = , m 4 m 2 3 " X ( m 2 X − m 2 p ∗ = " ) / ( 2 m X ) ! ( X → J / " # ) ! ( X → J / " $ + $ − ) = 0 . 19 ± 0 . 13 ! ( X → J / " # ) ! ( X → J / " $ + $ − ) Exp . = 0 . 14 ± 0 . 05

  25. QCDSR Results: The decay width p ∗ 5 ( A + B ) 2 + m 2 � � $ X ( A + C ) 2 ! ( X → J / " # ) = , m 4 m 2 3 " X ( m 2 X − m 2 p ∗ = " ) / ( 2 m X ) ! ( X → J / " # ) ! ( X → J / " $ + $ − ) = 0 . 19 ± 0 . 13 ! ( X → J / " # ) ! ( X → J / " $ + $ − ) Exp . = 0 . 14 ± 0 . 05

  26. QCDSR Results: The decay width p ∗ 5 ( A + B ) 2 + m 2 � � $ X ( A + C ) 2 ! ( X → J / " # ) = , m 4 m 2 3 " X ( m 2 X − m 2 p ∗ = " ) / ( 2 m X ) ! ( X → J / " # ) ! ( X → J / " $ + $ − ) = 0 . 19 ± 0 . 13 ! ( X → J / " # ) ! ( X → J / " $ + $ − ) Exp . = 0 . 14 ± 0 . 05

  27. Production in B decays Contributions from interactions with de charmonium and molecule components of the X(3872) mixed current c D * b c W D B s u K CMZ, Matheus, Nielsen, arXiv:1105.1343

  28. Production in B decays Effective theory of B meson weak decays + factorization hypothesis gives the matrix element: X q B p O 2 p’ K

  29. Production in B decays Effective theory of B meson weak decays + factorization hypothesis gives the matrix element: X q B p O 2 p’ K

  30. Production in B decays Effective theory of B meson weak decays + factorization hypothesis gives the matrix element: X q B p O 2 p’ K

  31. Production in B decays Effective theory of B meson weak decays + factorization hypothesis gives the matrix element: X q B p O 2 p’ K

  32. Production in B decays Effective theory of B meson weak decays + factorization hypothesis gives the matrix element: X q To be determined by B p O 2 p’ K QCDSR

  33. Two point correlator

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend