lift and project hierarchies for combinatorial problems
play

Lift-and-project hierarchies for combinatorial problems Monique - PowerPoint PPT Presentation

Lift-and-project hierarchies for combinatorial problems Monique Laurent CWI, Amsterdam & Tilburg University MAP 2012, Konstanz September 19, 2012 Typical combinatorial optimization problem: max c T x s.t. Ax b , x { 0 , 1 } n LP


  1. Lift-and-project hierarchies for combinatorial problems Monique Laurent CWI, Amsterdam & Tilburg University MAP 2012, Konstanz September 19, 2012

  2. Typical combinatorial optimization problem: max c T x s.t. Ax ≤ b , x ∈ { 0 , 1 } n LP relaxation: P := { x ∈ R n | Ax ≤ b } Integral polytope to be found: P I := conv ( P ∩ { 0 , 1 } n ) Goal: Procedure to construct a tighter, tractable relaxation P ′ such that P I ⊆ P ′ ⊆ P leading to P I after finitely many iterations.

  3. Cutting planes atal closure of P = { x ∈ R n : Ax ≤ b } : Gomory-Chv´ P ′ = { x | u T Ax ≤ ⌊ u T b ⌋ ∀ u ≥ 0 with u T A integer } . P ′ is a polyhedron. P I is found after finitely many iterations. [Chv´ atal 1973] O ( n 2 log n ) iterations suffice if P ⊆ [0 , 1] n . [Eisenbrand-Schulz 1999] But optimization over P ′ is hard! [Eisenbrand 1999]

  4. This talk: Lift-and-project methods We present several techniques to construct a hierarchy of LP/SDP relaxations: P ⊇ P 1 ⊇ . . . ⊇ P n = P I . � Balas-Ceria-Cornu´ ejols hierarchy [1993] LP � Lov´ asz-Schrijver N / N + operators [1991] LP / SDP � Sherali-Adams hierarchy [1990] LP � Lasserre hierarchy [2001] SDP Common feature: One can optimize in polynomial time over P t for any fixed t . Comparison: SA ⊆ LS ⊆ BCC ⊆ SA ∩ LS + Las

  5. Great interest recently in such hierarchies: Polyhedral combinatorics: How many rounds are needed to find P I ? Which valid inequalities are satisfied after t rounds? New tractable instances? Proof systems: Use hierarchies as a model to generate inequalities and show e.g. P I = ∅ . Complexity theory: What is the integrality gap after t rounds? Can one use the hierarchy to get improved tractable approximations? Link to hardness of the problem? Common background for the hierarchies: Moment theory and sums of squares of polynomials.

  6. Plan of the lecture Balas-Ceria-Cornu´ ejols, Lov´ sz-Schrijver, Sherali-Adams constructions. Full lifting and moment matrices Lasserre hierarchy Application to matchings, stable sets, knapsack, max-cut Copositive hierarchy

  7. Some notation P = { x ∈ R n : Ax ≤ b } Homogenize P to the cone: P = { ( x 0 , x ) ∈ R n +1 : bx 0 − Ax ≥ 0 } ˜ = { y ∈ R n +1 : g ℓ T y ≥ 0 ( ℓ = 1 , · · · , m ) } a T writing Ax ≤ b ℓ x ≤ b ℓ ( ℓ = 1 , · · · , m ) as � b ℓ � and setting g ℓ = . − a ℓ

  8. Lift-and-project strategy 1. Generate new constraints: Multiply the system Ax ≤ b by products of the constraints x i ≥ 0 and 1 − x i ≥ 0. � Polynomial system in x . 2. Linearize (and lift ) by introducing new variables y I for i ∈ I x i and setting x 2 products � i = x i . � Linear system in ( x , y ). 3. Project back on the x -variable space. � LP relaxation P ′ satisfying P I ⊆ P ′ ⊆ P . The methods vary in the choice of the multipliers and of iterating.

  9. The Balas-Ceria-Cornu´ ejols construction 1. Multiply the system Ax ≤ b by x 1 and 1 − x 1 : x 1 ( b − Ax ) ≥ 0 , (1 − x 1 )( b − Ax ) ≥ 0 2. Linearize: Set y i = x 1 x i , identify y 1 = x 1 and get the lift : M 1 = { ( x , y ) : y 1 = x 1 , bx 1 − Ay ≥ 0 , b (1 − x 1 ) − A ( x − y ) ≥ 0 } 3. Project M 1 back to the x -subspace and get P 1 such that P I ⊆ P 1 ⊆ P . 4. Iterate: use variable x 2 starting from P 1 and get P 12 , etc. Lemma P 1 = conv ( P ∩ { x : x 1 = 0 , 1 } ) . x 1 + (1 − x 1 ) x − y y Pf: “ ⊆ ”: Write x ∈ P 1 as x = x 1 1 − x 1 . “ ⊇ ”: x ∈ P ∩ { x : x 1 = 0 , 1 } = ⇒ ( x , x 1 x ) ∈ M 1 = ⇒ x ∈ P 1 . Corollary Find P I after n steps.

  10. The Lov´ asz-Schrijver construction: N -operator 1. Multiply Ax ≤ b by x i , 1 − x i ∀ i ∈ [ n ] and get the system: T � 1 � � 1 � ( b ℓ − a T ℓ x ) x i = g T e i ≥ 0 ∀ ℓ, ℓ x x T � 1 � � 1 � ( b ℓ − a T ℓ x )(1 − x i ) = g T ( e 0 − e i ) ≥ 0 ∀ ℓ. ℓ x x T � 1 � � 1 � 2. Linearize: The new matrix variable Y = belongs to x x M ( P ) = { Y ∈ S n +1 | Y 0 i = Y ii , Ye i , Y ( e 0 − e i ) ∈ ˜ P ∀ i ∈ [ n ] } , 3. Project: � � 1 � � x ∈ R n | ∃ Y ∈ M ( P ) s.t. N ( P ) = = Ye 0 x

  11. The Lov´ asz-Schrijver construction: N + -operator 1. Multiply Ax ≤ b by x i , 1 − x i ∀ i ∈ [ n ] and get the system: T � 1 � � 1 � ( b ℓ − a T ℓ x ) x i = g T e i ≥ 0 ∀ ℓ, ℓ x x T � 1 � � 1 � ( b ℓ − a T ℓ x )(1 − x i ) = g T ( e 0 − e i ) ≥ 0 ∀ ℓ. ℓ x x T � 1 � � 1 � 2. Linearize: The new matrix variable Y = belongs to x x M ( P ) = { Y ∈ S n +1 | Y 0 i = Y ii , Ye i , Y ( e 0 − e i ) ∈ ˜ P ∀ i ∈ [ n ] } , M + ( P ) = M ( P ) ∩ S + n +1 . 3. Project: � � 1 � � x ∈ R n | ∃ Y ∈ M + ( P ) s.t. N + ( P ) = = Ye 0 x

  12. Properties of the N - and N + -operators + ( P ) = N + ( N t − 1 0. Iterate: N t ( P ) = N ( N t − 1 ( P )), N t ( P )). + 1. P I ⊆ N + ( P ) ⊆ N ( P ) ⊆ P . � 2. N ( P ) ⊆ conv ( P ∩ { x | x i = 0 , 1 } ). i ∈ [ n ] 3. N n ( P ) = P I . 4. If one can optimize in polynomial time over P , then the same holds for N t ( P ) and for N t + ( P ) for any fixed t . Example For the ℓ 1 -ball centered at e / 2: � � x ∈ R V | � i ∈ V \ I (1 − x i ) ≥ 1 i ∈ I x i + � P = 2 ∀ I ⊆ V , 2 e ∈ N n − 1 P I = ∅ , but 1 ( P ). + Hence, n iterations of the N + operator are needed to find P I .

  13. Application to stable sets P = FR ( G ) = { x ∈ R V + | x i + x j ≤ 1 ( ij ∈ E ) } P I = STAB ( G ): stable set polytope of G = ( V , E ). 1. Y ∈ M ( FR ( G )) = ⇒ y ij = 0 for all edges ij ∈ E . 2. The clique inequality : � i ∈ Q x i ≤ 1 is valid for N + ( FR ( G )), but its N -rank is | Q | − 2. � SDP helps! i ∈ V ( C ) x i ≤ | C |− 1 3. The odd circuit inequalities : � 2 are valid for N ( FR ( G )) and they determine it exactly . n 4. α ( G ) − 2 ≤ N -rank ≤ n − α ( G ) − 1 . 5. N + -rank ≤ α ( G ) [tight for G = line graph of K 2 p +1 ]

  14. The Sherali-Adams construction 1. New polynomial constraints: • x I (1 − x ) W \ I ( b − Ax ) ≥ 0 for I ⊆ W with | W | = t . • x I (1 − x ) U \ I ≥ 0 for I ⊆ U with | U | = t + 1. 2. Linearize & lift: Introduce new variables y U for all U ∈ P t +1 ( V ), setting y i = x i ( x 2 i = x i ). 3. Project back on x -variables space and get SA t ( P ). Lemma SA 1 ( P ) = N ( P ) . SA t ( P ) ⊆ N t ( P ) .

  15. Full lifting �� � y x = ∈ { 0 , 1 } P ( V ) x ∈ { 0 , 1 } n x i � i ∈ I I ⊆ V y x = (1 , x 1 , .., x n , x 1 x 2 , .., x n − 1 x n , .., � x i ) i ∈ V   Y = y x ( y x ) T = � � x i x j �  i ∈ I j ∈ J I , J ⊆ V If x ∈ P ∩ { 0 , 1 } n then Y = y x ( y x ) T satisfies: 1. Y ( ∅ , ∅ ) = 1 . 2. Y ( I , J ) depends only on I ∪ J � moment matrix 3. Y � 0 . 4. g ℓ ( x ) Y � 0 � localizing moment matrix These conditions characterize conv ( y x : x ∈ P ∩ { 0 , 1 } n ), thus P I .

  16. Full lifting via moment matrices Definition Given y ∈ R P ( V ) define: 1. The moment matrix M V ( y ) = ( y I ∪ J ) I , J ∈P ( V ) . 2. The shifted vector g ∗ y = ( y I + � i g i y I ∪{ i } ) I ∈P ( V ) . [linearize g ( x ) y x = ( g ( x ) x I ) I ] 3. The localizing moment matrix M V ( g ∗ y ). Theorem 1. conv ( y x ( y x ) T : x ∈ P ∩ { 0 , 1 } ) is equal to ∆ P = { y ∈ R P ( V ) : y ∅ = 1 , M V ( y ) � 0 , M V ( g ℓ ∗ y ) � 0 ∀ ℓ } . 2. P I is the projection of ∆ P . 3. ∆ P is a polytope.

  17. Proof Definition Let Z be the matrix with columns y x for x ∈ { 0 , 1 } n . Recall: ∆ P = { y ∈ R P ( V ) : y ∅ = 1 , M V ( y ) � 0 , M V ( g ℓ ∗ y ) � 0 ∀ ℓ } . Lemma = { y ∈ R P ( V ) : y ∅ = 1 , Z − 1 y ≥ 0 , ( Z − 1 y ) J = 0 if χ J �∈ P } ∆ P = conv ( y x : x ∈ P ∩ { 0 , 1 } n ) . Proof: M V ( y ) = Z diag( Z − 1 y ) Z T . 1. Z diagonalizes M V ( y ): ⇒ Z − 1 y ≥ 0. Thus: M V ( y ) � 0 ⇐ ⇒ ( Z − 1 y ) J g ℓ ( χ J ) ≥ 0 for all J . 2. M V ( g ℓ ∗ y ) � 0 ⇐

  18. Case n = 2 Z is the 0 / 1 matrix indexed by P ( V ) with Z − 1 ( I , J ) = ( − 1) | J \ I | if I ⊆ J, 0 otherwise. Z ( I , J ) = 1 , ∅ 1 2 12 ∅ 1 2 12     ∅ 1 1 1 1 ∅ 1 − 1 − 1 1 1 0 1 0 1 1 0 1 0 − 1 Z − 1 =     Z = �     2 0 0 1 1 2 0 0 1 − 1     12 0 0 0 1 12 0 0 0 1    y 0 y 1 y 2 y 12 y ∅ − y 1 − y 2 + y 12 ≥ 0   y 1 − y 12 ≥ 0 y 1 y 1 y 12 y 12    M V ( y ) =  � 0 ⇐ ⇒   y 2 y 12 y 2 y 12 y 2 − y 12 ≥ 0    y 12 ≥ 0 y 12 y 12 y 12 y 12 

  19. Example    y ∅ y 1 y 2 y 12 y ∅ − y 1 − y 2 + y 12 ≥ 0   y 1 − y 12 ≥ 0 y 1 y 1 y 12 y 12    M V ( y ) =  � 0 ⇐ ⇒   y 2 y 12 y 2 y 12 y 2 − y 12 ≥ 0    y 12 ≥ 0 y 12 y 12 y 12 y 12  Consider � � ( x 1 , x 2 ) : g ( x ) = 3 P = 2 − x 1 − x 2 ≥ 0 . ( g ∗ y ) ∅ = 3 2 y ∅ − y 1 − y 2 , ( g ∗ y ) 1 = 3 2 y 1 − y 1 − y 12 = 1 2 y 1 − y 12 , ( g ∗ y ) 2 = 1 2 y 2 − y 12 , ( g ∗ y ) 12 = 3 2 y 12 − y 12 − y 12 = − 1 2 y 12 . ( g ∗ y ) ∅ − ( g ∗ y ) 1 − ( g ∗ y ) 2 + ( g ∗ y ) 12 = 3 2( y ∅ − y 1 − y 2 ) . M V ( y ) , M V ( g ∗ y ) � 0 ⇐ ⇒ y 12 = 0 , y 1 , y 2 ≥ 0 , y ∅ − y 1 − y 2 ≥ 0 .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend