lhc optics measurement correction procedures m aiba r
play

LHC optics measurement & correction procedures M. Aiba, R. - PowerPoint PPT Presentation

LHC optics measurement & correction procedures M. Aiba, R. Calaga, A. Morita, R. Toms & G. Vanbavinckhove Thanks to: I. Agapov, M. Bai, A. Franchi, M. Giovannozzi, V. Kain, G. Kruk, J. Netzel, S. Redaelli, F. Schmidt, J. Wenninger and


  1. LHC optics measurement & correction procedures M. Aiba, R. Calaga, A. Morita, R. Tomás & G. Vanbavinckhove Thanks to: I. Agapov, M. Bai, A. Franchi, M. Giovannozzi, V. Kain, G. Kruk, J. Netzel, S. Redaelli, F. Schmidt, J. Wenninger and F. Zimmermann Extended LTC - March 2008 Rogelio Tom´ as Garc´ ıa LHC optics measurement & correction procedures – p.1/37

  2. Contents • Calibration independent measurements: + Phase measurements: - from FT or SVD of turn-by-turn BPM data - from Closed Orbit Distortion + Betas from phases + Normalized Dispersion + Coupling from FT of turn-by-turn BPM data • Correction + Response matrix inversion + Simulations + RHIC tests and future SPS tests • Controls application Rogelio Tom´ as Garc´ ıa LHC optics measurement & correction procedures – p.2/37

  3. Turn-by-turn BPM data Fake LHC BPM data (pilot bunch) 4 3mm kick 3 2 Decoherence due to ∆ Q 1 x [mm] 0 σ bpm =0.2mm -1 -2 -3 -4 0 100 200 300 400 500 600 700 800 900 1000 Turn number Rogelio Tom´ as Garc´ ıa LHC optics measurement & correction procedures – p.3/37

  4. FFT of BPM data Fake LHC BPM FFT 300 Qx 250 Amplitude [arb. units] 200 150 100 Qs, 2Qs, ... -2Qx 50 Qy 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 Frequency [tune units] ∆ φ x between BPM1 and BPM2 = φ bpm 2 Qx - φ bpm 1 Qx A bpmN � � Coupling inferred from the amplitude of Qy Qy Rogelio Tom´ as Garc´ ıa LHC optics measurement & correction procedures – p.4/37

  5. FFT versus SUSSIX 3mm oscillation + 0.2mm Gaussian error (no decoherence) 3 SUSSIX FFT 2.5 Phase error [deg] 2 ∝ N -1/2 1.5 1 0.5 0 100 200 300 400 500 600 700 800 900 1000 Number of turns In presence of noise SUSSIX reduces the phase error by a factor 2-3 showing same scaling with N. Rogelio Tom´ as Garc´ ıa LHC optics measurement & correction procedures – p.5/37

  6. Closed Orbit Distortion The x CO change at location s produced by a corrector c is given by: � ∆ x CO ( s ) ∝ β s cos( | φ s − φ c | − Qπ ) A collection of orbits using different correctors allows to fit β s and φ s at all BPMs yielding: • calibration dependent β s • calibration independent φ s A. Morita, PRSTAB 10 , 072801 operational in KEK-B Rogelio Tom´ as Garc´ ıa LHC optics measurement & correction procedures – p.6/37

  7. LHC COD performance simulation 0.20 10.00 σ /A (worst) 5.94 σ /A (typ.) 4.35 σ /A (best) wo calibration error 0.15 Maximum error of ∆φ w calibration error = 2 ◦ needs σ σ max A =0.3% φ 0.10 0.05 0.00 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 BPM resolution Maximum Closed-Orbit Excitation: σ BPM /A Rogelio Tom´ as Garc´ ıa LHC optics measurement & correction procedures – p.7/37

  8. Betas from phases in the LHC arcs Betas from phases ( σ φ =0.25 o ) 5 Max. β -measurement error [%] 4 3 2 cot φ 12 − cot φ 13 β 1 = m 11 /m 12 − N 11 /N 12 1 Horizontal Vertical 0 0 5 10 15 20 25 30 Model rms ∆β/β [%] Model unknowns and BPM noise contribute to β error Using β 1 , β 2 , β 3 improves the error, works in IRs. Rogelio Tom´ as Garc´ ıa LHC optics measurement & correction procedures – p.8/37

  9. � to errors in LHC � D/ √ β x Robustness of 1.02 〈 D/ β 1/2 〉 err / 〈 D/ β 1/2 〉 ideal 〈 D 〉 err / 〈 D 〉 ideal 〈 β〉 err / 〈β〉 ideal 1.015 Ratio (err/model) 1.01 1.005 1 0.995 0 0.02 0.04 0.06 0.08 0.1 0.12 Horizontal rms beta-beating Rogelio Tom´ as Garc´ ıa LHC optics measurement & correction procedures – p.9/37

  10. Normalized dispersion � A bpmN β bpmN = c bpmN c global x Qx Let X bpmN be the radial steering= c bpmN D bpmN δ , X bpmN D bpmN D bpmN δ = c , A bpmN = global c global � � β bpmN β bpmN x x Finally averaging X bpmN /A bpmN over all BPMs: � D bpmN � X bpmN � � = c , ← frommodel global A bpmN � β bpmN x Rogelio Tom´ as Garc´ ıa LHC optics measurement & correction procedures – p.10/37

  11. Simulation of D/ √ β x measurement σ BPM =0.2mm, kick=2 σ , N=512turns, dp/p=0.15% Max. D β -1/2 measurement error [m 1/2 ] 0.04 0.03 0.02 0.01 0 0 5 10 15 20 Model rms ∆β/β [%] Effectively a model independent measurement! Rogelio Tom´ as Garc´ ıa LHC optics measurement & correction procedures – p.11/37

  12. Dispersion from D/ √ β and β σ BPM =0.2mm, kick=2 σ , N=128turns, dp/p=0.1% 3 2 1 Dispersion [m] 0 -1 -2 Simulation -3 MAD -4 0 2 4 6 8 10 12 14 16 Longitudinal location [km] Very good measurement of D from D/ √ β and β Rogelio Tom´ as Garc´ ıa LHC optics measurement & correction procedures – p.12/37

  13. Coupling (local) (For global coupling correction see: R. Jones et al, CERN-AB-2005-083 BDI0) Let A H Qy be the amplitude of the vertical tune in the horizontal plane, hence � A H A V | f 1001 | = 1 Qy Qx A H A V 2 Qx Qy • Calibration independent but BPM-tilt dependent • Close to the resonance: ∆ Q min ≈ 4∆ | f 1001 | PRSTAB 8 , 034001; PRSTAB 10 , 064003 Rogelio Tom´ as Garc´ ıa LHC optics measurement & correction procedures – p.13/37

  14. Coupling: measurement around LHC 0.105 MADX 0.1 Simulation 0.095 0.09 0.085 |f 1001 | 0.08 0.075 0.07 0.065 0.06 0.055 0 5 10 15 20 25 Longitudinal location [km] Random 2mrad BPM tilts, 400 turns, 4mm kick → Lo- cal coupling is measurable. Rogelio Tom´ as Garc´ ıa LHC optics measurement & correction procedures – p.14/37

  15. Optics correction • Using the model response matrix R , the change in the quadrupole circuits ∆ � k to achieve correction is given by: � D x � � ∆ � � k = − R − 1 ∆ √ β x φ, , Q x , Q y This equation applies the same for correction on 1 beam only or on 2 beams simultaneously. • Similarly for local coupling correction: � � ∆ � ℜ ( � f 1001 ) , ℑ ( � f 1001 ) , ℜ ( � f 1010 ) , ℑ ( � k s = − R − 1 f 1010 ) s Rogelio Tom´ as Garc´ ıa LHC optics measurement & correction procedures – p.15/37

  16. Correction: Simulation in 2006 6 Before Before 0.6 After After Peak ∆ D x / √β x [x10 -2 ] 4 Peak ∆β y / β y 0.4 Peak Vs. RMS 2 0.2 Peak β -Beat Dispersion 0 0 0 0.1 0.2 0.3 0.4 0 1 2 RMS ∆ D x / √β x [x10 -2 ] Peak ∆β x / β x 2 0.3 Before After Tune Shift: ∆ Q 1 RMS ∆β y / β y ∆ Q y [x10 -2 ] 0.2 0 0.1 -1 RMS β -Beat 0 -2 0 0.05 0.1 0.15 0.2 -2 -1 0 1 2 ∆ Q x [x10 -2 ] RMS ∆β x / β x • Errors: 80% measured & as installed, 20% extrapolated • Additional 2mm random sext. misalignments + 5 units random B2 Rogelio Tom´ as Garc´ ıa LHC optics measurement & correction procedures – p.16/37

  17. Correction: present status, preliminary 0.6 10 Before Before After After 8 Peak ∆ D x / √β x [x10 -2 ] LHC Beam 1, 60 Seeds 0.4 Peak ∆β y / β y 6 (Mutlipole Errs upto B10/A10) 3 RMS Spec 4 0.2 Peak Vs. RMS 2 Peak β -Beat Dispersion 0 0 0 0.2 0.4 0 1 2 3 4 5 RMS ∆ D x / √β x [x10 -2 ] Peak ∆β x / β x 0.3 3 Before After 2 RMS ∆β y / √β y 0.2 1 ∆ Q y , ∆ Q’ y , ∆ y 0 0.1 -1 Tune Shift [x 10 -2 ] -2 Chrom Shift [x 10] RMS β -Beat Orbit Shift [cm] 0 -3 0 0.1 0.2 0.3 -3 -2 -1 0 1 2 3 RMS ∆β x / √β x ∆ Q x , ∆ Q’ x , ∆ x • Errors: 100% measured & as installed • No additional misalignments added, no orbit correction Rogelio Tom´ as Garc´ ıa LHC optics measurement & correction procedures – p.17/37

  18. Correction: observations Correction is achieved for most of the seeds if: • σ φ < 1 ◦ • failing BPMs < 10% • σ D √ β ≈ 0 . 01 m 1 / 2 (see support slides for details) → Might be tight for LHC commissioning... Rogelio Tom´ as Garc´ ıa LHC optics measurement & correction procedures – p.18/37

  19. Coupling correction Using all the skew quadrupole correctors: 0.12 Uncorrected Corrected 0.1 0.08 ∆ Q min ≈ 0 . 01 |f 1001 | 0.06 0.04 ∆ Q min ≈ 0 . 001 0.02 0 0 5 10 15 20 25 30 Longitudinal location [km] → Not perfect due to the particular distribution of errors/correctors. Best local correction is realignment Rogelio Tom´ as Garc´ ıa LHC optics measurement & correction procedures – p.19/37

  20. RHIC exp.: 6 random quads used 1.2 Ideal Model Opp Polarity BPMs Baseline 1 Horizontal Quad Trimmed (∆φ) [Q Units] 0.8 0.6 0.4 0.2 0 0 0.5 1 1.5 2 2.5 3 3.5 4 1.2 Ideal Model Baseline 1 Vertical Quad Trimmed (∆φ) [Q Units] 0.8 0.6 0.4 0.2 0 0 0.5 1 1.5 2 2.5 3 3.5 4 Longitudinal Position [km] Rogelio Tom´ as Garc´ ıa LHC optics measurement & correction procedures – p.20/37

  21. RHIC exp.: MAD reconstruction, ∆ φ 6 Horizontal Reconstructed MADX δ(∆φ) [x10 -2 , Q Units] 4 Meas 2 0 -2 -4 Effect of 6 Trim Quads -6 0 0.5 1 1.5 2 2.5 3 3.5 4 6 δ(∆φ) [x10 -2 , Q Units] Vertical 4 2 0 -2 -4 -6 0 0.5 1 1.5 2 2.5 3 3.5 4 Longitudinal Position [km] Rogelio Tom´ as Garc´ ıa LHC optics measurement & correction procedures – p.21/37

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend