electroweak phase transition and sphaleron
play

Electroweak Phase Transition and Sphaleron Eibun Senaha (Natl Taiwan - PowerPoint PPT Presentation

Electroweak Phase Transition and Sphaleron Eibun Senaha (Natl Taiwan U) April 7, 2017 ACFI Workshop: Making the Electroweak Phase Transition (Theoretically) Strong @Umass-Amherst Outline part1: EWPT and sphaleron in a complex-extended SM


  1. Electroweak Phase Transition and Sphaleron Eibun Senaha (Natl Taiwan U) April 7, 2017 ACFI Workshop: Making the Electroweak Phase Transition (Theoretically) Strong @Umass-Amherst

  2. Outline • part1: EWPT and sphaleron in a complex-extended SM (cxSM) CW Chiang, M. Ramsey-Musolf, E.S., in progress • part2: Band structure effect on sphaleron rate at high-T. K. Funakubo, K. Fuyuto, E.S., arXiv:1612.05431

  3. Introduction - Standard perturbative treatment of EWPT is gauge-dependent. T=T C T C : T at which V eff has degenerate minima v C : minimum of V eff at T C - Gauge-independent methods: v C (1) v C and T C are determined by (2) Patel-Ramsey-Musolf (PRM) scheme [JHEP07(2011)029] v C and T C are determined separately. We analyze EWPT and sphaleron in the cxSM using 2 methods.

  4. SM with a complex scalar (cxSM) H: SU(2)-doublet Higgs, S: SU(2)-singlet Higgs We assume all parameters are real. m 2 , λ , δ 2 , b 2 , d 2 , a 1 , b 1 v 0 , v S 0 , m H 1 , m H 2 , α , m A , a 1

  5. SM with a complex scalar (cxSM) H: SU(2)-doublet Higgs, S: SU(2)-singlet Higgs We assume all parameters are real. m 2 , λ , δ 2 , b 2 , d 2 , a 1 , b 1 v 0 , v S 0 , m H 1 , m H 2 , α , m A , a 1 246GeV

  6. SM with a complex scalar (cxSM) H: SU(2)-doublet Higgs, S: SU(2)-singlet Higgs We assume all parameters are real. m 2 , λ , δ 2 , b 2 , d 2 , a 1 , b 1 v 0 , v S 0 , m H 1 , m H 2 , α , m A , a 1 246GeV 125GeV

  7. SM with a complex scalar (cxSM) H: SU(2)-doublet Higgs, S: SU(2)-singlet Higgs We assume all parameters are real. m 2 , λ , δ 2 , b 2 , d 2 , a 1 , b 1 v 0 , v S 0 , m H 1 , m H 2 , α , m A , a 1 246GeV 125GeV

  8. Patterns of PT Because of 2 fields, there are many patterns of phase transitions. (b) (a) (d) (c)

  9. Patterns of PT Because of 2 fields, there are many patterns of phase transitions. (b) (a) (d) (c) We will focus on type (a) PT.

  10. Leading order analysis where (a) Approximate formulas: - large positive δ 2 (negative α ) gives larger v C /T C . - However, too large positive δ 2 (negative α ) leads to unstable vacuum.

  11. Leading order analysis where (a) Approximate formulas: >0 - large positive δ 2 (negative α ) gives larger v C /T C . - However, too large positive δ 2 (negative α ) leads to unstable vacuum.

  12. Leading order analysis An example: 250 m H 2 = 230 GeV, v S 0 = 40 GeV, T LO a 1 = − (110 GeV) 3 C v LO 200 ¯ C - v C and T C are determined 150 numerically. [GeV] - smaller α (large δ 2 ) gives 100 larger v C /T C . 50 - EW vacuum becomes metastable for a small alpha. 0 -> upper bound on v C /T C -22 -21 -20 -19 -18 -17 -16 -15 α [ � ] - Stronger upper bound on v C /T C comes from bubble nucleation (see later.)

  13. Leading order analysis An example: 250 m H 2 = 230 GeV, v S 0 = 40 GeV, T LO a 1 = − (110 GeV) 3 C v LO 200 ¯ C - v C and T C are determined 150 numerically. [GeV] - smaller α (large δ 2 ) gives 100 larger v C /T C . 50 - EW vacuum becomes EW vacuum is metastable metastable for a small alpha. 0 -> upper bound on v C /T C -22 -21 -20 -19 -18 -17 -16 -15 α [ � ] - Stronger upper bound on v C /T C comes from bubble nucleation (see later.)

  14. NLO analysis - PRM scheme - O(hbar) T C v C V e ff ( v (1) 0 ; T C ) − V e ff ( v (2) 0 ; T C ) = 0 , v C = minimum of high-T potential at T C e.g. 250 0 v E EW E S -5x10 7 200 v C -1x10 8 Vacuum Energies [GeV 4 ] 150 -1.5x10 8 VEVs [GeV] -2x10 8 100 -2.5x10 8 50 -3x10 8 -3.5x10 8 0 T C 0 20 40 60 80 100 120 140 T C 0 20 40 60 80 100 120 140 T [GeV] T [GeV]

  15. μ dependence PRM scheme is gauge independent but scale dependent. origin: 200 180 160 140 120 [GeV] Different scales give different 100 orders of phase transition: 80 60 40 2 nd order for μ ≲ 160 GeV 20 1 st order for μ ≳ 160 GeV 0 50 100 150 200 250 300 [GeV]

  16. Improved-RPM scheme idea: μ dependence is reduced by renormalization group eq. our scheme:

  17. Improved-RPM scheme 200 180 160 140 120 [GeV] 100 80 60 40 T C (RGI) v C (RGI) ¯ 20 T C ¯ v C 0 50 100 150 200 250 300 µ [GeV] μ dependence is significantly reduced by the RG improvement. In this example, phase transition is 1 st order.

  18. LO vs. NLO 250 T C v C ¯ T LO C v LO ¯ 200 C 150 [GeV] 100 50 0 -22 -21 -20 -19 -18 -17 -16 -15 α [ ◦ ]

  19. LO vs. NLO T C < T LO 250 T C C v C ¯ T LO C v LO ¯ 200 C 150 [GeV] 100 50 0 -22 -21 -20 -19 -18 -17 -16 -15 α [ ◦ ]

  20. LO vs. NLO T C < T LO 250 T C C v C ¯ T LO C v LO ¯ 200 C 150 [GeV] 100 50 0 -22 -21 -20 -19 -18 -17 -16 -15 α [ ◦ ]

  21. LO vs. NLO T C < T LO 250 T C C v C ¯ T LO C 1dim. analogy v LO ¯ 200 C 150 [GeV] 100 T LO C 50 T C 0 246 GeV -22 -21 -20 -19 -18 -17 -16 -15 α [ ◦ ]

  22. LO vs. NLO T C < T LO 250 T C C v C ¯ T LO C 1dim. analogy v LO ¯ 200 C 150 [GeV] 100 T LO C 50 T C 0 246 GeV -22 -21 -20 -19 -18 -17 -16 -15 α [ ◦ ]

  23. LO vs. NLO T C < T LO 250 T C C v C ¯ T LO C 1dim. analogy v LO ¯ 200 C 150 [GeV] 100 T LO C 50 T C 0 246 GeV -22 -21 -20 -19 -18 -17 -16 -15 α [ ◦ ]

  24. LO vs. NLO α =-20.5 o T C < T LO 250 T C C v C ¯ T LO C 1dim. analogy v LO ¯ 200 C 150 [GeV] 100 T LO C 50 T C 0 246 GeV -22 -21 -20 -19 -18 -17 -16 -15 α [ ◦ ] In the following, α =-20.5 o is taken.

  25. LO vs. NLO benchmark point: minima of V high − T ( ϕ i ; T ) 250 m H 2 = 230 GeV, v S 0 = 40 GeV, ¯ v ( T ) v S ( T ) ¯ α = − 20 . 5 � , a 1 = − (110 GeV) 3 v S ( T ) ˜ 200 NLO Leading Order: LO 150 [GeV] 100 Next-to-Leading Order: 50 0 0 50 100 150 200 T [GeV]

  26. LO vs. NLO benchmark point: minima of V high − T ( ϕ i ; T ) 250 m H 2 = 230 GeV, v S 0 = 40 GeV, ¯ v ( T ) v S ( T ) ¯ α = − 20 . 5 � , a 1 = − (110 GeV) 3 v S ( T ) ˜ 200 NLO Leading Order: LO 150 [GeV] 100 Next-to-Leading Order: 50 0 0 50 100 150 200 T [GeV] How about nucleation temperature?

  27. Onset of PT - T C is not onset of the PT. - Nucleation starts somewhat V eff below T C . “Not all bubbles can grow” T = Tc 0 expand? or shrink? T = T N 0 50 100 150 200 250 300 volume energy vs. surface energy v [GeV] ∝ (radius) 3 ∝ (radius) 2 There is a critical value of radius -> critical bubble

  28. Nucleation temperature - Nucleation rate per unit time per unit volume [A.D. Linde, NPB216 (’82) 421] - D efinition of nucleation temperature ( T N ) Γ N ( T N ) H ( T N ) − 3 = H ( T N ) .

  29. S 3 (T)/T - LO case - benchmark point: 500 m H 2 = 230 GeV, v S 0 = 40 GeV, α = − 20 . 5 � , a 1 = − (110 GeV) 3 400 T N = 84 . 9 GeV 300 S 3 ( T )/ T S 3 ( T N ) = 152 . 01 GeV 200 T N 152.01 GeV 100 T LO � T N C ' 6 . 1% 84.9 GeV T LO 0 C 80 82 84 86 88 90 cf., MSSM: O(0.1)% T [GeV] T C = 83.1 GeV; T N (LO) = 84.9 GeV , T C (LO) = 90.4 GeV

  30. No nucleation case 10 6 - α =-22.0 o 10 5 - V C /T C = (209.1GeV)/(65.52GeV) = 3.2 10 4 - Too strong 1 st -order EWPT may not be consistent!! 10 3 - No nucleation for α <-21.4 o 10 2 0 10 20 30 40 50 60

  31. 解を求める 上の 次元 系 Sphaleron σφαλερο s (sphaleros) “ready to fall” [F .R.Klinkhamer and N.S.Manton, PRD30, 2212 (1984)] Energy vacuum sphaleron N CS =1 configuration space vacuum N CS =0

  32. 解を求める 上の 次元 系 Sphaleron in SU(2) gauge-Higgs system How do we find a saddle point configuration? -> use of a noncontractible loop. sphaleron Energy vacuum N CS =1 configuration space vacuum N CS =0

  33. Manton’ s ansatz [N.S. Manton, PRD28 (’83) 2019] Energy functional

  34. Manton’ s ansatz [N.S. Manton, PRD28 (’83) 2019] Energy functional

  35. Manton’ s ansatz [N.S. Manton, PRD28 (’83) 2019] Energy functional input:

  36. Sphaleron energy Equations of motion for the sphaleron with the boundary conditions:

  37. E sph (T)/T in cxSM 10 5 10 4 E sph ( T )/ T 10 3 10 2 10 1 0 20 40 60 80 100 T [GeV] E sph ( T LO E sph ( T C ) E sph ( T N ) C ) = 78 . 00 , = 74 . 23 , = 61 . 31 , T LO T C T N C

  38. T-dependence of E sph (T) E sph ( T ) = 4 π ¯ v ( T ) E ( T ) g 2 If T-dependence comes from v(T) only, one has E sph ( T ) = E sph (0) ¯ v ( T ) v 0 Is this scaling law valid?

  39. T-dependence of E sph (T) 2 E sph ( T ) = 4 π ¯ v ( T ) E ( T ) g 2 1.95 If T-dependence comes from 1.9 v(T) only, one has E ( T ) 1.85 E sph ( T ) = E sph (0) ¯ v ( T ) 1.8 v 0 Is this scaling law valid? 1.75 0 20 40 60 80 100 T [GeV]

  40. T-dependence of E sph (T) 2 E sph ( T ) = 4 π ¯ v ( T ) E ( T ) g 2 1.95 If T-dependence comes from 1.9 v(T) only, one has E ( T ) 1.85 E sph ( T ) = E sph (0) ¯ v ( T ) 1.8 v 0 Is this scaling law valid? 1.75 0 20 40 60 80 100 T [GeV] No, it breaks down especially when T approaches T C .

  41. T-dependence of E sph (T) 2 E sph ( T ) = 4 π ¯ v ( T ) E ( T ) g 2 1.95 If T-dependence comes from 1.9 v(T) only, one has E ( T ) 1.85 E sph ( T ) = E sph (0) ¯ v ( T ) 1.8 v 0 Is this scaling law valid? 1.75 0 20 40 60 80 100 T [GeV] No, it breaks down especially when T approaches T C . ∵ presence of v S (T).

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend