lesson 23 linear partial differential equations
play

Lesson 23 Linear partial differential equations 1 We have seen - PowerPoint PPT Presentation

Lesson 23 Linear partial differential equations 1 We have seen that ODEs can be reduced to almost banded infinite-dimensional equations using Chebyshev and ultraspherical polynomials These infinite-dimensional equations can be solved


  1. Lesson 23 Linear partial differential equations 1

  2. • We have seen that ODEs can be reduced to almost banded infinite-dimensional equations using Chebyshev and ultraspherical polynomials • These infinite-dimensional equations can be solved adaptively using Givens rota- tions. � The exact error in residual is calculated, which can be used to decide con- vergence • This lecture we see how these ideas can be used for linear PDEs • The resulting method works for arbitrary linear PDEs on a rectangle • The first step is to do function approximation on a square 2

  3. 2D Function Approximation 3

  4. • In 1D, we approximated functions using Chebyshev series: � � f 0 n − 1 . � . f ( x ) ≈ f k T k ( x ) = ( T 0 ( x ) , . . . , T n − 1 ( x )) � � . � � k =0 f n − 1 � Functions are identified with vectors • In 2D, we use a tensor product of Chebyshev series: � Functions are identified with matrices 4

  5. • In 1D, we approximated functions using Chebyshev series: � � f 0 n − 1 . � . f ( x ) ≈ f k T k ( x ) = ( T 0 ( x ) , . . . , T n − 1 ( x )) � � . � � k =0 f n − 1 � Functions are identified with vectors • In 2D, we use a tensor product of Chebyshev series: n − 1 m − 1 � � f ( x, y ) ≈ f kj T k ( x ) T j ( y ) j =0 k =0 � � � � T 0 ( y ) f 00 f 0( m − 1) · · · . . . ... . . . = ( T 0 ( x ) , . . . , T n − 1 ( x )) � � � � . . . � � � � T m − 1 ( y ) f ( n − 1)0 f ( n − 1)( m − 1) · · · � Functions are identified with matrices 5

  6. • In 1D, we calculated the Chebyshev series by evaluating f ( x ) at the Chebyshev points x n : –1 1 • In 2D, we evaluate f ( x, y ) at a product of Chebyshev points x n,m := x n × x � m : 1.0 0.5 x - 1.0 - 0.5 0.5 1.0 - 0.5 - 1.0 y 6

  7. • In 1D, we have ˇ   f 0 . . C n f ( x n ) ≈   .   ˇ f n � 1 where C n can is viewed as an n × n matrix • We will show that in 2D we have 7

  8. • In 1D, we have ˇ   f 0 . . C n f ( x n ) ≈   .   ˇ f n � 1 where C n can is viewed as an n × n matrix • We will show that in 2D we have ˇ ˇ   f 00 · · · f 0( m � 1) . . ... C n f ( x n,m ) C � . .   m ≈ . .   ˇ ˇ f ( n � 1)0 · · · f ( n � 1)( m � 1) 8

  9. • For any fixed y , we can expand ∞ ˇ � f ( x, y ) = f k ( y ) T k ( x ) k =0 where � 1 � 2 f ( x, y ) T k ( x ) ˇ f k ( y ) = � x √ 1 − x 2 π − 1 • It follows that the smoothness of is inherited from • We can thus expand 9

  10. • For any fixed y , we can expand ∞ ˇ � f ( x, y ) = f k ( y ) T k ( x ) k =0 where � 1 � 2 f ( x, y ) T k ( x ) ˇ f k ( y ) = � x √ 1 − x 2 π − 1 • It follows that the smoothness of ˇ f k ( y ) is inherited from f • We can thus expand ∞ ˇ ˇ � f k ( y ) = f kj T j ( y ) j =0 10

  11. • For any fixed y , we expand numerically ˇ f n � � 0 ( y ) . C n f ( x n , y ) =: . � � . � � ˇ f n n � 1 ( y ) • We can thus expand • This gives us 11

  12. • For any fixed y , we expand numerically ˇ f n � � 0 ( y ) . C n f ( x n , y ) =: . � � . � � ˇ f n n � 1 ( y ) • We can thus expand ˇ f nm � � k 0 . C m ˇ f n . k ( x m ) =: � � . � � ˇ f nm k ( m � 1) • This gives us 12

  13. • For any fixed y , we expand numerically ˇ f n � � 0 ( y ) . C n f ( x n , y ) =: . � � . � � ˇ f n n � 1 ( y ) • We can thus expand ˇ f nm � � k 0 . C m ˇ f n . k ( x m ) =: � � . � � ˇ f nm k ( m � 1) • This gives us ˇ f n 0 ( x � � � m ) . C n f ( x n , x m ) � C � � C � . m = � � . m � ˇ f n n � 1 ( x � m ) � 13

  14. • For any fixed y , we expand numerically ˇ f n � � 0 ( y ) . C n f ( x n , y ) =: . � � . � � ˇ f n n � 1 ( y ) • We can thus expand ˇ f nm � � k 0 . C m ˇ f n . k ( x m ) =: � � . � � ˇ f nm k ( m � 1) • This gives us ˇ f n 0 ( x � � � m ) . C n f ( x n , x m ) � C � � C � . m = � � . m � ˇ f n n � 1 ( x � m ) � ˇ 0 ( x m ) , . . . , ˇ f n f n � = C m n � 1 ( x m ) ˇ ˇ f nm f nm � · · · � 00 0( m � 1) . . ... . . = � � . . � � ˇ ˇ f nm f nm · · · ( n � 1)0 ( n � 1)( m � 1) 14

  15. Partial derivatives 15

  16. 16

  17. 17

  18. 18

  19. 19

  20. 20

  21. 21

  22. 22

  23. ∂ λ + µ f ∂ x λ ∂ y µ with a change of basis to C ( λ ) k ( x ) × C ( µ ) • The mixed partial derivative ( y ) j series takes the form D λ F D � µ • By the same arguments, the conversion operator from to takes the form where is the 1D conversion operator, defined in terms of that convert a series to a series 23

  24. ∂ λ + µ f ∂ x λ ∂ y µ with a change of basis to C ( λ ) k ( x ) × C ( µ ) • The mixed partial derivative ( y ) j series takes the form D λ F D � µ • By the same arguments, the conversion operator from T k ( x ) × T j ( y ) to C ( λ ) k ( x ) × C ( µ ) ( y ) takes the form j S 0 � λ F S � 0 � µ where S 0 � λ := S λ � 1 · · · S 0 is the 1D conversion operator, defined in terms of S λ that convert a C ( λ ) series to a C ( λ +1) series 24

  25. 25

  26. 26

  27. 1 0 0 0 … 1 0 0 0 … 0 0 0 0 - 2 1 1 0 0 0 0 0 … Å 4 3 6 0 0 4 0 0 0 … 0 0 0 0 Å - 2 1 0 0 … 1 - 3 1 0 0 0 0 0 … 0 0 0 6 0 0 … 4 0 0 0 3 6 Å 4 8 8 - 3 1 .F. 0 0 … .F. 0 0 0 0 8 0 … 1 - 4 1 0 6 0 0 = + 0 0 0 0 0 … Å 8 8 15 6 10 0 0 0 0 0 10 … 0 0 8 0 Å 1 - 4 0 0 … 1 - 5 1 0 0 0 0 0 … 15 0 0 0 10 Å 6 Å Å Å Å Å Å Å 24 8 12 1 - 5 0 0 … … … … … Å Å Å Å Å Å Å Å Å Å 24 8 Å Å Å Å Å 27

  28. Boundary conditions 28

  29. � ���������������������������������������������� � ������������ ���������������������� �������������� u ( − 1 , y ) = g 1 ( y ) , u (1 , y ) = g 2 ( y ) u ( x, − 1) = h 1 ( x ) , u ( x, 1) = h 2 ( x ) ∆ u ( x, y ) = f ( x, y ) � ��������������������������������������������������� u 29

  30. � ������ � � T 0 ( y ) T 1 ( y ) u ( x, y ) = ( T 0 ( x ) , T 1 ( x ) , . . . ) U � � � . � . . � ������������ � � T 0 ( y ) � � � � u ( − 1 , y ) T 0 ( − 1) T 1 ( − 1) . . . T 1 ( y ) = U � � u (1 , y ) T 0 (1) T 1 (1) . . . � . � . . � T ( y ) � 30

  31. � ������ � � T 0 ( y ) T 1 ( y ) u ( x, y ) = ( T 0 ( x ) , T 1 ( x ) , . . . ) U � � � . � . . � ������������ � � T 0 ( y ) � � � � u ( − 1 , y ) T 0 ( − 1) T 1 ( − 1) . . . T 1 ( y ) = U � � u (1 , y ) T 0 (1) T 1 (1) . . . � . � . . � � T 0 ( y ) � � 1 − 1 . . . T 1 ( y ) = U � � 1 1 . . . � . � . . � � T 0 ( y ) T 1 ( y ) =: B U � � � . � . . 31

  32. � ������������������ � u ( − 1 , y ) � � g 1 ( y ) � = u (1 , y ) g 2 ( y ) ������� B U = G � ����� G = (ˇ g 1 , ˇ g 2 ) � � ˇ ˇ g 10 g 20 ˇ ˇ g 11 g 21 = � � . . � � . . . . 32

  33. � ���������� ������������� � u ( x, − 1) � � h 1 ( x ) � = u ( x, 1) h 2 ( x ) ������� U B � = H ����� � ˇ h 1 , ˇ � H = h 2 ˇ ˇ � � h 10 h 20 ˇ ˇ h 11 h 21 = � � � � . . . . . . 33

  34. � ��������������� ���������������������� u ( − 1 , y ) = g 1 ( y ) , u (1 , y ) = g 2 ( y ) u ( x, − 1) = h 1 ( x ) , u ( x, 1) = h 2 ( x ) ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 = f ( x, y ) ������� B U = G � , U B � = H, D 2 U S � 0 � 2 + S 0 � 2 U D � = F 2 34

  35. � ���������������� ������������������������ u ( − 1 , y ) = g 1 ( y ) , u (1 , y ) = g 2 ( y ) u ( x, − 1) = h 1 ( x ) , u ( x, 1) = h 2 ( x ) ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 + k 2 u = f ( x, y ) ������� B U = G � , U B � = H, D 2 + k 2 S � U S � 0 � 2 + S 0 � 2 U D � � � = F 0 � 2 2 35

  36. Sylvester matrix equations 36

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend