lecture 4 some numerical methods for control problems
play

Lecture 4: Some numerical methods for control problems Enrique - PowerPoint PPT Presentation

Lecture 4: Some numerical methods for control problems Enrique FERNNDEZ-CARA Dpto. E.D.A.N. - Univ. of Sevilla Numerical controllability The 1D heat equation The Navier-Stokes system Other parabolic PDEs and systems E. Fernndez-Cara


  1. Lecture 4: Some numerical methods for control problems Enrique FERNÁNDEZ-CARA Dpto. E.D.A.N. - Univ. of Sevilla Numerical controllability The 1D heat equation The Navier-Stokes system Other parabolic PDEs and systems E. Fernández-Cara Numerics in control problems

  2. Outline Background 1 Controllability - the 1D heat equation Controllability - the Navier-Stokes system The heat equation: numerical results 2 The Fursikov-Imanuvilov formulation Direct finite element approximation The numerical controllability of a nonlinear heat equation 3 Problems and results E. Fernández-Cara Numerics in control problems

  3. Controllability problems, examples and applications Examples and applications FIRST (SIMPLE) EXAMPLE: 1D heat: y t − y xx = v 1 ω , ( x , t ) ∈ ( 0 , 1 ) × ( 0 , T )   y ( 0 , t ) = y ( 1 , t ) = 0 , t ∈ ( 0 , T ) (H) y ( x , 0 ) = y 0 ( x ) , x ∈ ( 0 , 1 )  We assume: ω = ( a , b ) , 0 < a < b < 1 Null controllability problem: For all y 0 find v such that y ( T ) = 0 NC? Yes, for all ω and T Applications: Heating and cooling, controlling a population, etc. E. Fernández-Cara Numerics in control problems

  4. Controllability problems, examples and applications Examples and applications A numerical experiment Ω = ( 0 , 1 ) , ω = ( 0 . 2 , 0 . 8 ) , T = 0 . 5, y 0 ( x ) ≡ sin( π x ) , y t − ay xx = v 1 ω , a = 10 − 1 1 0 � 1 � 2 � 3 � 4 � 5 1 0.8 0.5 0.6 0.4 0.3 0.4 x 0.2 0.2 0.1 t 0 0 Figure: ω = ( 0 . 2 , 0 . 8 ) . The control E. Fernández-Cara Numerics in control problems

  5. Controllability problems, examples and applications Examples and applications 1 0.8 0.6 0.4 0.2 0 1 0.8 0.5 0.6 0.4 0.3 0.4 x 0.2 0.2 t 0.1 0 0 Figure: ω = ( 0 . 2 , 0 . 8 ) . The state E. Fernández-Cara Numerics in control problems

  6. Controllability problems, examples and applications Examples and applications SECOND (NOT SO SIMPLE) EXAMPLE: Navier-Stokes: y t + ( y · ∇ ) y − ν 0 ∆ y + ∇ p = v 1 ω , ∇ · y = 0   y ( x , t ) = 0 , ( x , t ) ∈ ∂ Ω × ( 0 , T ) y ( x , 0 ) = y 0 ( x )  AC? NC? ECT? OPEN What we know: Local results Theorem [EFC-Guerrero-Imanuvilov-Puel 2004] Fix a solution ( y , p ) , with y ∈ L ∞ ∃ ε > 0 such that � y 0 − y ( 0 ) � H 1 0 ≤ ε ⇒ ∃ controls such that y ( T ) = y ( T ) E. Fernández-Cara Numerics in control problems

  7. Controllability problems, examples and applications Examples and applications y t + ( y · ∇ ) y − ν 0 ∆ y + ∇ p = v 1 ω , ∇ · y = 0   y ( x , t ) = 0 , ( x , t ) ∈ ∂ Ω × ( 0 , T ) y ( x , 0 ) = y 0 ( x )  ∃ other results, among them: - Global AC for when N = 2, Navier boundary conditions [Coron 1996] - Global boundary “AC” in a 3D cube [Guerrero-Imanuvilov-Puel 2012] - Global NC with periodicity [Fursikov-Imanuvilov 1999], without boundary [Coron-Fursikov 1996], . . . E. Fernández-Cara Numerics in control problems

  8. Controlling fluids Exact controllability to a fixed flow - Numerical approximations and results A numerical experiment: Taylor-Green (vortex) flow y = (sin( 2 x 1 ) cos( 2 x 2 ) e − 8 t , − cos( 2 x 1 ) sin( 2 x 2 ) e − 8 t ) Figure: Taylor-Green flow E. Fernández-Cara Numerics in control problems

  9. Controlling fluids Exact controllability to a fixed flow - Numerical approximations and results A numerical experiment: Taylor-Green (vortex) flow Figure: The Taylor-Green velocity field E. Fernández-Cara Numerics in control problems

  10. Controlling fluids Exact controllability to a fixed flow - Numerical approximations and results A numerical experiment: Taylor-Green (vortex) flow Ω = ( 0 , π ) × ( 0 , π ) , ω = ( π/ 3 , 2 π/ 3 ) × ( 0 , 1 ) , T = 1 y 0 = y + m z , z = ∇ × ψ , ψ = ( π − y ) 2 y 2 ( π − x ) 2 x 2 ( m << 1) Approximation: P 2 in ( x 1 , x 2 ) and t + multipliers . . . – freefem ++ Figure: The mesh − Nodes: 3146, Elements: 15900, Variables: 7 × 3146 E. Fernández-Cara Numerics in control problems

  11. Controlling fluids Exact controllability to a fixed flow - Numerical approximations and results A numerical experiment: Taylor-Green (vortex) flow Figure: The initial state E. Fernández-Cara Numerics in control problems

  12. Controlling fluids Exact controllability to a fixed flow - Numerical approximations and results A numerical experiment: Taylor-Green (vortex) flow Figure: The state at t = 0 . 6 E. Fernández-Cara Numerics in control problems

  13. Controlling fluids Exact controllability to a fixed flow - Numerical approximations and results A numerical experiment: Taylor-Green (vortex) flow Figure: The state at t = 0 . 9 Taylor-Green Vortex.edp E. Fernández-Cara Numerics in control problems

  14. Numerics: methods and results The Fursikov-Imanuvilov strategy for the heat equation The problem: y t − y xx = v 1 ω ( H 1 ) + . . . Goal: “Good” v such that y ( T ) = 0 numerically, i.e. � y ( T ) � L 2 ∼ 10 − 10 Glowinski, JL Lions, Boyer-Hubert-Le Rousseau, Münch . . . The “classical” way: ω × ( 0 , T ) | v | 2 dx dt Minimize �� Subject to ( H 1 ) , y ( T ) = 0 Eventually: penalize the functional and/or the PDEs But: Numericall ill-posed, leads to oscillations! E. Fernández-Cara Numerics in control problems

  15. Numerics: methods and results The Fursikov-Imanuvilov strategy for the heat equation ALTERNATIVE METHOD: introduce ρ, ρ 0 ∼ e C ( x ) / ( T − t ) and solve The weighted (FI) formulation of the NC problem: ( ρ 2 | y | 2 + 1 ω ρ 2 0 | v | 2 ) Minimize �� Subject to ( H 1 ) , y ( T ) = 0 Notation: Ly = y t − y xx , L ∗ p = − p t − p xx Note: y = y + Lv Euler-Lagrange characterization of the optimal ( v , y ) : y = ρ − 2 L ∗ p , v = − ρ − 2 0 p | ω × ( 0 , T ) together with the weak (Lax-Milgram) formulation ( ρ − 2 L ∗ p L ∗ ϕ + ρ − 2 Ω y 0 ( x ) ϕ ( x , 0 ) dx 0 1 ω p ϕ ) dx dt = � �� � ∀ ϕ ∈ P ; p ∈ P m ( p , ϕ ) = � ℓ, ϕ � ∀ ϕ ∈ P ; p ∈ P ( ρ − 2 | L ∗ ϕ | 2 + ρ − 2 0 1 ω | ϕ | 2 ) < + ∞ , ϕ | x = 0 ≡ ϕ | x = 1 ≡ 0 } �� P = { ϕ : E. Fernández-Cara Numerics in control problems

  16. Numerics: methods and results The Fursikov-Imanuvilov strategy for the heat equation Lax-Milgram formulation: m ( p , ϕ ) = � ℓ, ϕ � ∀ ϕ ∈ P ; p ∈ P ( ρ − 2 | L ∗ ϕ | 2 + ρ − 2 0 1 ω | ϕ | 2 ) < + ∞ , ϕ | x = 0 ≡ ϕ | x = 1 ≡ 0 } �� P = { ϕ : A weak formulation of L ( ρ − 2 L ∗ p ) + ρ − 2 0 1 ω p = 0 , ( x , t ) ∈ ( 0 , 1 ) × ( 0 , T )   p ( 0 , t ) = p ( 1 , t ) = 0 , t ∈ ( 0 , T )   ( ρ − 2 L ∗ p ) | x = 0 = ( ρ − 2 L ∗ p ) | x = 1 = 0 , t ∈ ( 0 , T )   ( ρ − 2 L ∗ p ) | t = 0 = y 0 ( x ) , ( ρ − 2 L ∗ p ) | t = T = 0 , x ∈ ( 0 , 1 )  Attention: 2nd order in time, 4th order in space ∃ ! solution in view of Carleman: 2 ( | ϕ t | 2 + | ∆ ϕ | 2 ) + ρ − 2 1 |∇ ϕ | 2 + ρ − 2 ρ − 2 0 | ϕ | 2 � �� � I ( ϕ ) := ( ρ − 2 | L ∗ ϕ | 2 + ρ − 2 0 1 ω | ϕ | 2 ) �� ≤ C ∀ ϕ ∈ P ⇒ The ellipticity of m ( · , · ) in L 2 loc and . . . The continuity of ℓ in P E. Fernández-Cara Numerics in control problems

  17. Numerics: methods and results The Fursikov-Imanuvilov strategy for the heat equation m ( p , ϕ ) = � ℓ, ϕ � ∀ ϕ ∈ P ; p ∈ P ( ρ − 2 | L ∗ ϕ | 2 + ρ − 2 0 1 ω | ϕ | 2 ) < + ∞ , ϕ | x = 0 ≡ ϕ | x = 1 ≡ 0 } �� P = { ϕ : Then: y = ρ − 2 L ∗ p , v = − ρ − 2 0 p 1 ω Standard finite element approximation: m ( p h , ϕ h ) = � ℓ, ϕ h � ∀ ϕ h ∈ P h ; p h ∈ P h Then: ( ρ − 2 | L ∗ ϕ | 2 + ρ − 2 0 1 ω | ϕ | 2 ) < + ∞ , ϕ | x = 0 ≡ ϕ | x = 1 ≡ 0 } �� P h ⊂ P = { ϕ : i.e. necessarily C 1 in x and C 0 in t finite elements (relatively bad news) Alternative: mixed formulation (multipliers) + C 0 in x and t finite elements Standard FEM framework (good news): convergence in P for usual polynomial P h with ∪ h P h = P EFC-Münch, Cindea-EFC-Münch, EFC-Münch-Souza, . . . E. Fernández-Cara Numerics in control problems

  18. Numerics: methods and results The Fursikov-Imanuvilov strategy for the heat equation Coming back to the first numerical experiment Ω = ( 0 , 1 ) , ω = ( 0 . 2 , 0 . 8 ) , T = 0 . 5, y 0 ( x ) ≡ sin( π x ) , y t − ay xx = v 1 ω , a = 10 − 1 Approximation: P 3 , x ⊗ P 1 , t , C 1 in x , C 0 in t 1 0 � 1 � 2 � 3 � 4 � 5 1 0.8 0.5 0.6 0.4 0.3 0.4 x 0.2 0.2 0.1 t 0 0 Figure: ω = ( 0 . 2 , 0 . 8 ) . The control E. Fernández-Cara Numerics in control problems

  19. Numerics: methods and results The Fursikov-Imanuvilov strategy for the heat equation 1 0.8 0.6 0.4 0.2 0 1 0.8 0.5 0.6 0.4 0.3 0.4 0.2 x 0.2 t 0.1 0 0 Figure: ω = ( 0 . 2 , 0 . 8 ) . The state E. Fernández-Cara Numerics in control problems

  20. The numerical controllability of a nonlinear heat equation Problems and results An extension: A semilinear heat equation:  y t − ( a ( x ) y x ) x + f ( y ) = v 1 ω , ( x , t ) ∈ ( 0 , 1 ) × ( 0 , T )  y ( 0 , t ) = 0 , ( x , t ) ∈ { 0 , 1 } × ( 0 , T ) y ( x , 0 ) = y 0 ( x ) , x ∈ ( 0 , 1 )  We assume: f : R �→ R is Lipschitz-continuous, with | f ( s ) | ∼ | s | log p ( 1 + | s | ) as | s | → + ∞ , p ≥ 1 Known results, [EFC-Zuazua, 2000], [Barbu, 2000] - Recall: If f ( 0 ) = 0 and p < 3 / 2, NC holds ∀ p > 2 ∃ f with f ( 0 ) = 0 such that NC does not hold It is unknown what happens when 3 / 2 ≤ p ≤ 2 E. Fernández-Cara Numerics in control problems

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend