1 of 30 once upon a time constant diffusion j d u u
play

1 of 30 Once Upon a Time... Constant diffusion: J = - D u - PowerPoint PPT Presentation

1 of 30 Once Upon a Time... Constant diffusion: J = - D u u t = - J = D D u But is this truly realistic??? 2 of 30 Problems With Constant Diffusion Any initial


  1. « ≈ � � 1 of 30 Once Upon a Time... Constant diffusion: J = - D “ ÿ u ∑ u ÅÅÅÅÅÅÅÅÅÅ ∑ t = -“ ÿ J = D D u But is this truly realistic???

  2. « ≈ � � 2 of 30 Problems With Constant Diffusion Any initial condition, even a point distribution, instantly "spreads out" to cover an infinite domain. Consider the one-dimensional case: l o o m o o ∑ t = D ∑ 2 u ∑ u ÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅ ÅÅÅ u H x , 0 L = d H x L n ∑ x 2 exp i y j z fl u H x , t L = j z j - z è!!!!!!!!!!!!! k { x 2 1 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅ ÅÅÅÅ ÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅ 4 p D t 4 D t

  3. « ≈ � � 3 of 30 Problems With Constant Diffusion 0.8 0.6 0.4 0.2 -10 -5 5 10

  4. « ≈ � � 4 of 30 How Can We Improve This? Use a non-constant diffusion term: J = - D H u L “ ÿ u H x , t L ∑ t = -“ ÿ J = “ ÿ H D H u L “ ÿ u L ∑ u ÅÅÅÅÅÅÅÅÅÅ This makes intuitive sense - in an insect population, for example, we would expect very densely populated areas to diffuse outwards more quickly than sparsely populated areas.

  5. « ≈ � � 5 of 30 Crap! Of course, now we need to figure out how to deal with non-constant diffusion in our solution.

  6. « ≈ � � 6 of 30 A General Approach Rewrite our equation as ∑ t - “ ÿ H D H u L “ ÿ u L = 0 ∑ u ÅÅÅÅÅÅÅÅÅÅ We can consider this to be an example of a general class of functions of the form G H x , t , u , u x , u t , u xx , u xt , u tt L = 0

  7. « ≈ � � 7 of 30 A General Approach The one-parameter family of stretching functions: êê = e a x x ê = e b t t êê = e c u u

  8. « ≈ � � 8 of 30 A General Approach The one-parameter family of stretching functions: êê = e a x x ê = e b t t êê = e c u u a , b , and c are constants; e is a real parameter on some open interval that contains 1. Define G to be invariant if there exists a smooth function f H e L such that G H x ê L = f H e L G H x , t , u , u x , u t , u xx , u xt , u tt L ê , u êê , t êê , u êê x êê êê x êê êê êê , u ê , u êê x êê , u ê , u ê t êê t t x t

  9. « ≈ � � 9 of 30 A General Approach Assume G is invariant. This gives us G H x êê L = f H e L G H x , t , u L ê , u êê , t G H e a x , e b t , e c u L = f H e L G H x , t , u L G H e a x , e b t , e c u L = f H e L H 0 L G H e a x , e b t , e c u L = 0 (Because G is homogenous.)

  10. « ≈ � � 10 of 30 A General Approach Differentiate with respect to e : a x e a ∑ G ∑ x + b t e b ∑ G ∑ t + c u e c ∑ G ÅÅÅÅÅÅÅÅ ÅÅÅ ÅÅÅÅÅÅÅÅ ÅÅÅ ÅÅÅÅÅÅÅÅ ∑ u = 0 ÅÅÅ Set e = 1 (which we can do because we restrict e to a domain that contains 1): a x ∑ G ∑ x + b t ∑ G ∑ t + c u ∑ G ÅÅÅÅÅÅÅÅ ÅÅÅ ÅÅÅÅÅÅÅÅ ÅÅÅ ÅÅÅÅÅÅÅÅ ∑ u = 0 ÅÅÅ Clever people look at this and see that the transformation we want to use is u = t c ê b r H z L t a ê b x z = ÅÅÅÅÅÅÅÅ ÅÅÅ

  11. « ≈ � � 11 of 30 A General Approach Verification of the transformation: a x ∑ G ∑ x + b t ∑ G ∑ t + c u ∑ G ÅÅÅÅÅÅÅÅ ÅÅÅ ÅÅÅÅÅÅÅÅ ÅÅÅ ÅÅÅÅÅÅÅÅ ∑ u = 0 ÅÅÅ a x ∑ G ∑ z ∑ z ∑ x + b t ∑ G ∑ z ∑ z ∑ t + c u ∑ G ∑ z ∑ z ÅÅÅÅÅÅÅÅ ÅÅÅ ÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅ ÅÅÅ ÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅ ÅÅÅ ÅÅÅÅÅÅÅÅÅÅ ∑ u = 0 ∑ z t a ê b , ∑ z 1 ÅÅÅÅÅÅÅÅÅ ∑ x = ÅÅÅÅÅÅÅÅ ÅÅÅ ÅÅÅÅÅÅÅÅÅ ∑ t = ∫

  12. « ≈ � � 12 of 30 A General Approach What have we accomplished with all our fancy math? G H x , t , u , u x , u t , u xx , u xt , u tt L = 0 ó g H z , r , r ', r '' L = 0

  13. « ≈ � � 13 of 30 A Specific Example Recall the problem we're actually working on: ∑ t = “ ÿ H D H u L “ ÿ u L ∑ u ÅÅÅÅÅÅÅÅÅÅ D H u L = D 0 J u N m ÅÅÅÅÅÅÅÅ u 0

  14. « ≈ � � 14 of 30 A Specific Example Letting m = 1 gives us ∑ x J D 0 ∑ x N ∑ u ∑ t = ∑ u ∑ u ÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅ u 0 And because we're lazy, we'll assume D 0 ÅÅÅÅÅÅÅÅ u 0 = 1, so ∑ x J u ∑ u ∑ x N ∑ u ∑ t = ∑ ÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅ The problem is now l ∑ x I u ∑ u ∑ x M o o m o o ∑ u ∑ ÅÅÅÅÅÅÅ ∑ t = ÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅ u H x , 0 L = d H x L n

  15. « ≈ � � 15 of 30 A Specific Example Other assumptions: Since no organisms are being born or dying, we require for all t > 0 u H x , t L „ x = 1 ‡ ¶ -¶ and x Ø≤¶ u H x , t L = 0 lim

  16. « ≈ � � 16 of 30 A Specific Example Check for invariance: G H x ê L = f H e L G H x , t , u , u x , u t , u xx , u xt , u tt L ê , u êê , t êê , u êê x êê êê x êê êê ê , u ê , u ê t êê , u êê x êê , u êê t t x t êê = e a x x ê = e b t t êê = e c u u êê J u êê N = e c - b ∑ u ∑ x J u ∑ u ∑ x N êê êê ∑ u ê - ∑ êê ∑ u ∑ t - e 2 c - 2 a ∑ ÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅ ∑ t ∑ x ∑ x We have invariance if c - b = 2 c - 2 a fl c = 2 a - b

  17. « ≈ � � 17 of 30 A Specific Example u = t c ê b r H z L t a ê b x z = ÅÅÅÅÅÅÅÅ ÅÅÅ With our invariance condition, u = t H 2 a - b Lê b r H z L t a ê b x z = ÅÅÅÅÅÅÅÅ ÅÅÅ

  18. « ≈ � � 18 of 30 A Specific Example Let's be clever: u H x , t L „ x = 1 ‡ ¶ -¶ r J x t a ê b N „ x = 1 t H 2 a - b Lê b ‡ ¶ ÅÅÅÅÅÅÅÅ ÅÅÅ -¶ r H z L „ z = 1 t H 3 a - b Lê b ‡ ¶ -¶ Time-independence requires b = 3 a Which simplifies the transformation to u = t - 1 ê 3 r H z L z = x t - 1 ê 3

  19. « ≈ � � 19 of 30 A Specific Example l ∑ x I u ∑ u ∑ x M o o o o o ∑ u ∑ m ÅÅÅÅÅÅÅ ∑ t = ÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅ ï 3 H r r ' L ' + r + z r ' = 0 u = t - 1 ê 3 r H z L o o o o o n z = x t - 1 ê 3 This equation can be integrated to give 3 r r ' + z r = constant Take the constant to be zero; the solution is r H z L = A 2 - z 2 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅ 6

  20. « ≈ � � 20 of 30 A Specific Example Use our conditions to clean it up: x Ø≤¶ u H x , t L = 0 lim means that l o o , † x § < A r H z L = m o o A 2 - z 2 ÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅ † x § > A n 6 0 And u H x , t L „ x = 1 ‡ ¶ -¶ means that 1 ê 3 A = J 9 2 N ÅÅÅÅÅ Now switch everything back to original coordinates.

  21. « ≈ � � 21 of 30 A Specific Example l 6 t H A 2 t 2 ê 3 - x 2 L , † x § < A t 1 ê 3 o o u H x , t L = m o o ÅÅÅÅÅÅÅ 1 † x § > A t 1 ê 3 n 0 About time. Let's take a look!

  22. « ≈ � � 22 of 30 A Specific Example - Pretty Pictures 0.35 0.3 0.25 0.2 0.15 0.1 0.05 -1 -0.5 0.5 1

  23. « ≈ � � 23 of 30 A Specific Example The key feature of this solution is the sharp wave front at x f = A t 1 ê 3 This wave is moving with speed 3 A t - 2 ê 3 „ x f = 1 ÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅ ÅÅÅÅÅ „ t

  24. « ≈ � � 24 of 30 Comparing Constant and Density-Dependent Diffusion at t = .1 0.8 0.6 0.4 0.2 -1 -0.5 0.5 1

  25. « ≈ � � 25 of 30 Comparing Constant and Density-Dependent Diffusion at t = 10 0.08 0.06 0.04 0.02 -10 -5 5 10

  26. « ≈ � � 26 of 30 What About the Not-Simple Case, You Ask? Recall that the general form is ∑ t = “ ÿ H D H u L “ ÿ u L ∑ u ÅÅÅÅÅÅÅÅÅÅ D H u L = D 0 J u N m ÅÅÅÅÅÅÅÅ u 0 and we assumed m = 1 for all the work we just did. Is there a general solution?

  27. « ≈ � � 27 of 30 What About the Not-Simple Case, You Ask? Yes, and here it is: l o 1 ê m , † x § § r 0 l H t L l H t L J 1 - J r 0 l H t L N 2 N o o u H x , t L = m o o u 0 o ÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅ x ÅÅÅÅÅÅÅ † x § > r 0 l H t L n 0 Where 1 êH 2 + m L l H t L = J t N ÅÅÅÅÅÅÅ t 0 Q G I 1 2 M m + 3 ÅÅÅÅÅÅÅ ÅÅÅÅÅ 2 m p 1 ê 2 u 0 G I 1 2 D 0 H m + 2 L r 0 m + 1 M , t 0 = r 0 = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅ D 0 and n 0 are positive constants; Q is the initial density at the origin, and r 0 comes from requiring that the integral over the domain at all times be equal to Q .

  28. « ≈ � � 28 of 30 Not-Simple Case, t = .1 and m = 1, 2, 3 1 0.8 0.6 0.4 0.2 -2 -1 1 2

  29. « ≈ � � 29 of 30 Not-Simple Case, t = 10 and m = 1, 2, 3 0.4 0.3 0.2 0.1 -2 -1 1 2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend