lecture 24 heat flow
play

Lecture 24: Heat Flow COMPSCI/MATH 290-04 Chris Tralie, Duke - PowerPoint PPT Presentation

Lecture 24: Heat Flow COMPSCI/MATH 290-04 Chris Tralie, Duke University 4/12/2016 COMPSCI/MATH 290-04 Lecture 24: Heat Flow Announcements Group Assignment 3 Out: First Deadline Monday 4/18. Final Deadline Wednesday 4/27 (Sakai says 4/26


  1. Lecture 24: Heat Flow COMPSCI/MATH 290-04 Chris Tralie, Duke University 4/12/2016 COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  2. Announcements ⊲ Group Assignment 3 Out: First Deadline Monday 4/18. Final Deadline Wednesday 4/27 (Sakai says 4/26 but that’s wrong...e-mail me solution if go until 4/27) ⊲ Final Project Final Deadline 5/3 5:00 PM COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  3. Table of Contents ◮ Group Assignment 3 Preview ⊲ Scalar Fields / Laplacian Review ⊲ Heat Flow COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  4. Group Assignment 3 Preview COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  5. Table of Contents ⊲ Group Assignment 3 Preview ◮ Scalar Fields / Laplacian Review ⊲ Heat Flow COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  6. Mesh Scalar Fields (Functions) ⊲ A real number for every point on the surface COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  7. Coordinates As Functions COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  8. Laplacian Eigenfunctions (Homer Modes) Lf = λ f 0 1 2 COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  9. Discrete Circle Laplacian Eigenvectors https://github.com/COMPSCI290-S2016/NumpyDemos/blob/master/1DLaplacian.py COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  10. Discrete Circle Laplacian Eigenvectors COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  11. Curvature Vector δ x = Lx , δ y = Ly , δ z = Lz � δ = ( x i , y i , z i ) − ( x j , y j , z j ) j ∈ N ( i ) COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  12. Table of Contents ⊲ Group Assignment 3 Preview ⊲ Scalar Fields / Laplacian Review ◮ Heat Flow COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  13. 1D Heat Equation Let f ( x , t ) be the distribution of heat over a 1D bar of uniform material parameterized by x at time t . Then heat flow is governed by ∂ 2 f ( x , t ) = ∂ f ( x , t ) ∂ x 2 ∂ t COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  14. 1D Heat Equation Let f ( x , t ) be the distribution of heat over a 1D bar of uniform material parameterized by x at time t . Then heat flow is governed by ∂ 2 f ( x , t ) = ∂ f ( x , t ) ∂ x 2 ∂ t ⊲ The higher the curvature of the heat distribution, the faster it dissipates COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  15. 1D Heat Flow Example COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  16. 1D Heat Flow Example COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  17. 1D Heat Flow Example COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  18. 1D Heat Flow Example COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  19. 1D Heat Flow Example COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  20. Generalizing To Surfaces ∂ 2 f ( x , t ) = ∂ f ( x , t ) ∂ x 2 ∂ t Let f be the discrete values of a function on a mesh. What is the heat equation? COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  21. Generalizing To Surfaces ∂ 2 f ( x , t ) = ∂ f ( x , t ) ∂ x 2 ∂ t Let f be the discrete values of a function on a mesh. What is the heat equation? Lf = − ∂ f ∂ t COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  22. Generalizing To Surfaces ∂ 2 f ( x , t ) = ∂ f ( x , t ) ∂ x 2 ∂ t Let f be the discrete values of a function on a mesh. What is the heat equation? Lf = − ∂ f ∂ t Video example... COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  23. Solutions To The Heat Equation ∂ 2 f ( x , t ) = ∂ f ( x , t ) ∂ x 2 ∂ t COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  24. Solutions To The Heat Equation ∂ 2 f ( x , t ) = ∂ f ( x , t ) ∂ x 2 ∂ t f ω = cos ( ω x ) e − ω 2 t COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  25. Solutions To The Heat Equation ∂ 2 f ( x , t ) = ∂ f ( x , t ) ∂ x 2 ∂ t f ω = cos ( ω x ) e − ω 2 t Lf = − ∂ f ∂ t COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  26. Solutions To The Heat Equation ∂ 2 f ( x , t ) = ∂ f ( x , t ) ∂ x 2 ∂ t f ω = cos ( ω x ) e − ω 2 t Lf = − ∂ f ∂ t Let φ k be the k th eigenvector of L and λ k be the associated eigenvalue. Then solutions are f k = φ k e − λ t COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  27. Initial Conditions What if initial condition f 0 doesn’t happen to be an eigenvector of L ? COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  28. Initial Conditions What if initial condition f 0 doesn’t happen to be an eigenvector of L ? ⊲ Project f 0 onto eigen basis, sum the solutions of each eigenvector individually � ( f T 0 φ k ) e − λ k t φ k f ( t ) = k COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  29. Initial Conditions What if initial condition f 0 doesn’t happen to be an eigenvector of L ? ⊲ Project f 0 onto eigen basis, sum the solutions of each eigenvector individually � ( f T 0 φ k ) e − λ k t φ k f ( t ) = k Demo... COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  30. Heat Kernel Signature For every point, the fraction of heat that stays at that point after a certain amount of time t = 20 t = 500 What does this look like? COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  31. Heat Kernel Signature For every point, the fraction of heat that stays at that point after a certain amount of time t = 20 t = 500 What does this look like? Multiscale curvature COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  32. Heat Kernel Signature: Computations � ( f T 0 φ k )[ i ] e − λ k t φ k [ i ] f ( t )[ i ] = k COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  33. Heat Kernel Signature: Computations � ( f T 0 φ k )[ i ] e − λ k t φ k [ i ] f ( t )[ i ] = k By definition, starting with a unit amount of heat at every point � 1 a = i � f 0 [ a ] = 0 otherwise COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  34. Heat Kernel Signature: Computations � ( f T 0 φ k )[ i ] e − λ k t φ k [ i ] f ( t )[ i ] = k By definition, starting with a unit amount of heat at every point � 1 a = i � f 0 [ a ] = 0 otherwise � φ k [ i ] e − λ k t φ k [ i ] f ( t )[ i ] = k � e − λ k t φ k [ i ] 2 f ( t )[ i ] = k COMPSCI/MATH 290-04 Lecture 24: Heat Flow

  35. Another Example t = 20 t = 500 COMPSCI/MATH 290-04 Lecture 24: Heat Flow

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend