lecture 20 motion estimation
play

Lecture 20: Motion estimation Most slides from S. Lazebnik, which - PowerPoint PPT Presentation

Lecture 20: Motion estimation Most slides from S. Lazebnik, which are based on other slides from S. Seitz, R. Szeliski, M. Pollefeys 1 Announcements PS9 and PS10 deadlines extended to April 21 2 Optical flow What moved where? Source: S.


  1. Lecture 20: Motion estimation Most slides from S. Lazebnik, which are based on other slides from S. Seitz, R. Szeliski, M. Pollefeys 1

  2. Announcements • PS9 and PS10 deadlines extended to April 21 2

  3. Optical flow What moved where? Source: S. Lazebnik 3

  4. Motion is a powerful perceptual cue Source: S. Lazebnik 4

  5. Motion is a powerful perceptual cue G. Johansson, “Visual Perception of Biological Motion and a Model For Its Analysis", Perception and Psychophysics 14, 201-211, 1973. Source: S. Lazebnik 5

  6. Motion is a powerful perceptual cue G. Johansson, “Visual Perception of Biological Motion and a Model For Its Analysis", Perception and Psychophysics 14, 201-211, 1973. Source: S. Lazebnik 6

  7. Motion field Source: S. Lazebnik 7

  8. Estimating optical flow I ( x , y , t –1) I ( x , y , t ) • Given two subsequent frames, estimate the motion field u(x,y) and v(x,y) between them • Common assumptions • Brightness constancy: projection of the same point looks the same in every frame • Small motion: points do not move very far • Spatial coherence: points move like their neighbors Source: S. Lazebnik 8

  9. <latexit sha1_base64="DhWrnIE7gdWIgy9PNwT2+fX+E=">ACOXicbVBLSwMxEM76tr6qHr0MFqHFWnZV0IsgelHwUMGq0K4lm6YazD5IJsWy9G958V94E7x4UMSrf8BsreBrYMj3fTPDZL4gkUKj6z4Q8Mjo2PjE5O5qemZ2bn8/MKpjo1ivMZiGavzgGouRcRrKFDy80RxGgaSnwX+1n9rMOVFnF0gt2E+yG9jERbMIpWauarjZDiFaMyPeoVTRk6JdiBhjZhM70pQ7dXPyxmbxlwzSvBGlgKq2D6YsmJZ0vgiX/Yr2ZL7gVtx/wF3gDUCDqDbz941WzEzI2Sal3AT9lCoUTPJermE0Tyi7pe8bmFEQ679tH95D1as0oJ2rGxGCH31+0RKQ627YWA7szv171om/lerG2xv+6mIEoM8Yp+L2kYCxpDZC2hOEPZtYAyJexfgV1Rlas3PWBO/3yX/B6XrF26i4x5uF3b2BHRNkiSyTIvHIFtklB6RKaoSRW/JInsmLc+c8Oa/O2frkDOYWSQ/wn/ALA2pq8=</latexit> The brightness constancy constraint I ( x , y , t –1) I ( x , y , t ) Simple loss function [Lucas & Kanade 1981]. Find flow that minimizes: X [ I ( x, y, t − 1) − I ( x + u ( x, y ) , y + v ( x, y ) , t )] 2 L ( u, v ) = x,y Source: S. Lazebnik

  10. The brightness constancy constraint I ( x , y , t –1) I ( x , y , t ) Brightness Constancy Equation: I ( x , y , t 1 ) I ( x u , y v ) ( x , y ) ( x , y ), t − = + + Derivative in y direction Linearizing the right side using Taylor expansion: I ( x , y , t 1 ) I ( x , y , t ) I u ( x , y ) I v ( x , y ) − ≈ + + x y I u I v I 0 + + ≈ Hence, x y t Source: S. Lazebnik 10

  11. The brightness constancy constraint I u I v I 0 + + = x y t • How many equations and unknowns per pixel? • One equation, two unknowns • What does this constraint mean? I ( u , v ) I 0 ∇ ⋅ + = t • The component of the flow perpendicular to the gradient (i.e., parallel to the edge) is unknown! gradient ( u , v ) If ( u , v ) satisfies the equation, 
 so does ( u+u’ , v+v’ ) if I ( u ' , v ' ) 0 ( u ’, v ’) ∇ ⋅ = ( u + u ’, v + v ’) edge Source: S. Lazebnik 11

  12. The aperture problem Perceived motion Source: S. Lazebnik 12

  13. The aperture problem Actual motion Source: S. Lazebnik 13

  14. The barber pole illusion http://en.wikipedia.org/wiki/Barberpole_illusion Source: S. Lazebnik 14

  15. The barber pole illusion http://en.wikipedia.org/wiki/Barberpole_illusion Source: S. Lazebnik 15

  16. Solving the aperture problem • How to get more equations for a pixel? • Spatial coherence constraint: assume the pixel’s neighbors have the same (u,v) • E.g., if we use a 5x5 window, that gives us 25 equations per pixel I ( x ) [ u , v ] I ( x ) 0 ∇ ⋅ + = i t i I ( x ) I ( x ) I ( x ) ⎡ ⎤ ⎡ ⎤ x 1 y 1 t 1 ⎢ ⎥ ⎢ ⎥ I ( x ) I ( x ) u I ( x ) ⎡ ⎤ x 2 y 2 ⎢ ⎥ t 2 ⎢ ⎥ = − ⎢ ⎥ v … … … ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ � � � ⎢ ⎥ ⎢ ⎥ I ( x ) I ( x ) I ( x ) ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ x n y n t n [Lucas & Kanade 1981] Source: S. Lazebnik 16

  17. Lucas-Kanade flow Least squares problem: I ( x ) I ( x ) I ( x ) ⎡ ⎤ ⎡ ⎤ x 1 y 1 t 1 ⎢ ⎥ ⎢ ⎥ I ( x ) I ( x ) I ( x ) u ⎡ ⎤ x 2 y 2 ⎢ ⎥ t 2 ⎢ ⎥ = − ⎢ ⎥ v ⎢ ⎥ … ⎢ ⎥ … … ⎣ ⎦ � � � ⎢ ⎥ ⎢ ⎥ I ( x ) I ( x ) I ( x ) ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ x n y n t n When is this system solvable? [Lucas & Kanade 1981] Source: S. Lazebnik 17

  18. Lucas-Kanade optical flow I ( x ) I ( x ) I ( x ) ⎡ ⎤ ⎡ ⎤ x 1 y 1 t 1 A d b ⎢ ⎥ ⎢ ⎥ = I ( x ) I ( x ) I ( x ) u ⎡ ⎤ x 2 y 2 ⎢ ⎥ t 2 ⎢ ⎥ = − ⎢ ⎥ n 2 2 1 n 1 v ⎢ ⎥ × × × ⎢ ⎥ … … … ⎣ ⎦ � � � ⎢ ⎥ ⎢ ⎥ I ( x ) I ( x ) I ( x ) ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ x n y n t n T T • Solution given by ( A A)d A b = I I I I I I u ∑ ∑ ∑ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ x x x y x t M = A T A is the “second = − ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ I I I I I I v ∑ ∑ ∑ moment” matrix ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ x y y y y t (summations are over all pixels in the window) [Lucas & Kanade 1981] Source: S. Lazebnik 18

  19. Analyzing the second moment matrix Estimation of optical flow is well-conditioned • precisely for regions with high “cornerness”: λ 2 “Edge” 
 λ 2 >> λ 1 “Corner” 
 λ 1 and λ 2 are large, 
 λ 1 ~ λ 2 Eigenvalues “Edge” 
 λ 1 and λ 2 are small “Flat” λ 1 >> λ 2 region λ 1 Source: S. Lazebnik 19

  20. Conditions for solvability Source: S. Lazebnik 20

  21. Conditions for solvability Source: S. Lazebnik 21

  22. Lucas-Kanade flow example Input frames Output Source: MATLAB Central File Exchange Source: S. Lazebnik 22

  23. Fixing the errors in Lucas-Kanade • The motion is large (larger than a pixel) • Iterative refinement • Multi-resolution (coarse-to-fine) estimation 
 • Local ambiguity • Smooth using graphical model refinement Source: S. Lazebnik 23

  24. Large motions Source: Khurram Hassan-Shafique CAP5415 Computer Vision 2003 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend