current through a very small conductor
play

Current through a very small conductor nano HUB .org online - PowerPoint PPT Presentation

CQT Lecture #4 nano HUB .org online simulations and more Unified Model for U: Self-consistent Quantum Transport CQT, Lecture#4: Field (SCF) Coulomb blockade and Fock space Far from Equilibrium Objective: s To illustrate the limitations


  1. CQT Lecture #4 nano HUB .org online simulations and more Unified Model for U: Self-consistent Quantum Transport CQT, Lecture#4: Field (SCF) Coulomb blockade and Fock space Far from Equilibrium Objective: Σ s To illustrate the limitations of the model described in Lectures 2,3 and introduce a μ 1 μ 2 completely different approach based on H the concept of Fock space. Σ 1 Σ 2 I believe this will be a key concept in the next stage of development of transport physics. Approach based on “QTAT” (1)Beenakker, Phys.Rev.B44,1646 (1991), (2) Datta, Quantum Transport: Averin & Likharev, J.LowTemp.Phys. 62, Atom to Transistor, 345 (1986) Cambridge (2005) Reference: QTAT, Chapter 3.4. Supriyo Datta 1 Network for Computational Nanotechnology

  2. Current through a very small conductor nano HUB .org online simulations and more γ 2 / � γ � q γ 1 / 1 ⇒ 1 Normalized 2 � 0.9 Current 0.8 F μ 0.7 1 μ 2 0.6 0.5 0.4 ⎡ ⎤ 0.3 γ 1 f 1 + γ 2 f 2 F = 0.2 − qV D ⇒ ⎢ ⎥ γ 1 + γ 2 ⎣ ⎦ 0.1 γ 2 / � 0 γ � -0.2 0 0.2 0.4 0.6 / f γ 1 γ 2 1 1 q [ ] = f 1 − f 2 I γ 1 + γ 2 � γ 2 / � γ � / 1 μ 2 μ 1 γ 1 γ 2 μ 2 q γ 2 / � γ � = / max I 1 γ 1 + γ 2 � μ 1 q γ 1 ⇒ if γ 2 = γ 1 μ 2 2 � μ 1 Supriyo Datta 2 Network for Computational Nanotechnology

  3. Conductance of a very small conductor nano HUB .org online simulations and more γ 2 / � γ � / Assume γ 2 = γ 1 1 2 γ + 4 k B T 1 μ q γ 1 1 ⇒ μ 2 1 2 � Conduc tan ce = ∂ I Normalized 0.8 Current 0.6 ∂ V D 0.4 q γ 1 /2 � 0.2 ~ − qV D ⇒ 0 2 γ 1 + 4 k B T -0.2 -0.2 0 0.2 0.4 0.6 0.8 q 2 /4 � γ 2 / � γ 1 >> k B T γ � γ 2 / � ~ if γ / � / 1 1 μ 2 Conduc tan ce quantum μ 1 μ 2 q 2 /2 π � μ 1 ~ Supriyo Datta 3 Network for Computational Nanotechnology

  4. Effect of “U” on conductance nano HUB .org online simulations and more Assume γ 2 = γ 1 U 0 = 0.5 eV S D U 0 /2 CHANNEL q γ 1 ⇒ V G 1 V D 2 � 0.9 Normalized I 0.8 Current 0.7 0.6 0.5 0.4 U 0 : Increase in 0.3 0.2 0.1 potential due to 0 − qV D ⇒ -0.2 0 0.2 0.4 0.6 SINGLE electron γ 2 / � γ 2 / � γ γ � � / / 1 1 Assume Level floats up U 0 >> k B T , γ 1 , γ 2 μ 2 γ 2 by U 0 γ 1 + γ 2 μ 2 μ 1 μ 1 Supriyo Datta 4 Network for Computational Nanotechnology

  5. SCF with self-interaction correction nano HUB .org online simulations and more Assume γ 2 = γ 1 U 0 = 0.5 eV S D U 0 /2 CHANNEL q γ 1 ⇒ V G 1 V D 2 � 0.9 Normalized I 0.8 Current 0.7 0.6 0.5 0.4 0.3 0.2 0.1 = U 0 ( N − 0 − qV D ⇒ U i N i ) -0.2 0 0.2 0.4 0.6 Self-interaction γ 2 / � γ 2 / � γ γ � � / / 1 1 Level does Correction NOT float up μ 2 μ 1 μ 1 Supriyo Datta 5 Network for Computational Nanotechnology

  6. 2 levels: Unrestricted SCF nano HUB .org online simulations and more γ 2 / � γ � γ 2 / � / γ � / 1 1 γ 2 / � γ � / 1 μ 2 μ 2 μ 1 μ 1 μ 1 μ 2 1 0.9 0.8 Restricted SCF 0.7 Unrestricted SCF 0.6 = U i U 0 N 0.5 0.4 = U 0 ( N − 0.3 U i N i ) 0.2 0.1 0 Self-interaction -0.2 0 0.2 0.4 0.6 0.8 Correction Supriyo Datta 6 Network for Computational Nanotechnology

  7. 2 levels: SCF versus exact nano HUB .org online simulations and more γ 2 / � γ 2 / � γ 2 / � γ γ γ � � � / / / 1 1 1 One-electron μ 2 energy levels μ 2 μ 1 μ 1 μ 1 μ 2 1 Exact 0.9 Needs picture 0.8 in “Fock” space 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -0.2 0 0.2 0.4 0.6 0.8 Supriyo Datta 7 Network for Computational Nanotechnology

  8. 1-level: the view from “Fock space” nano HUB .org online simulations and more One-electron picture “Fock space” 1 E = ε 1 E = ε 1 E = 0 0 Most of our thinking is based on this picture Supriyo Datta 8 Network for Computational Nanotechnology

  9. 2 levels: the view from “Fock space” nano HUB .org online simulations and more 2^2 many-electron levels 2 one-electron levels 11 E = ε 1 + ε 2 + U 0 E = ε 2 E = ε 2 10 E = ε 1 E = ε 1 01 E = 0 00 Supriyo Datta 9 Network for Computational Nanotechnology

  10. 1-level: Current flow in “Fock space” nano HUB .org online simulations and more γ 1 γ 2 q γ 2 / � = γ � I / γ 1 + γ 2 E = ε 1 � 1 1 1 = 0 P 1 0.9 γ 2 / � γ � / 0.8 1 0.7 ε 1 μ 2 0.6 μ 1 0 P 0 = 1 0.5 E = 0 0.4 0.3 0.2 0.1 0 -0.2 0 0.2 0.4 0.6 γ 2 / � γ � / E = ε 1 1 = γ 2 /( γ 1 + γ 2 ) P 1 1 = ( q / � ) γ 1 P μ 2 I γ � γ 2 / � 1 / 1 = ( q / � ) γ 2 P 0 ε 1 μ 1 0 E = 0 P 0 = γ 1 /( γ 1 + γ 2 ) Supriyo Datta 10 Network for Computational Nanotechnology

  11. 2 levels: Current flow in “Fock space” nano HUB .org online simulations and more 1 11 11 0.9 0.8 0.7 01 10 0.6 01 10 0.5 0.4 00 0.3 00 0.2 0.1 γ 2 / � 11 γ � / 0 γ 2 / � γ -0.2 0 0.2 0.4 0.6 0.8 � 1 / 1 μ 2 γ 2 / � γ � 01 10 / μ 1 μ 2 1 μ 1 μ 2 00 μ 1 Supriyo Datta 11 Network for Computational Nanotechnology

  12. 2 levels: Current flow in “Fock space” nano HUB .org online simulations and more 2 γ 1 γ 2 1 I = q 0.9 γ 1 + γ 2 � 0.8 → ( q γ 1 / � ) 2 γ 1 γ 2 I = q 0.7 γ 1 + 2 γ 2 � 0.6 0.5 → (2/3) ( q γ 1 / � ) 0.4 0.3 0.2 = ( q / � ) γ 1 P 0.1 I 1 0 = ( q / � ) 2 γ 2 P 0 -0.2 0 0.2 0.4 0.6 0.8 γ 2 / � γ � / 01 10 1 = 2 γ 2 /( γ 1 + 2 γ 2 ) 1 P μ 2 P 0 = γ 1 /( γ 1 + 2 γ 2 ) μ 1 00 Supriyo Datta 12 Network for Computational Nanotechnology

  13. Coulomb blockade and strong correlation nano HUB .org online simulations and more and γ 2 / � γ f f 00 = (1 − f ↑ )*(1 − f ↓ ) � ↑ ↓ / P 1 10 = f ↑ *(1 − f ↓ ) P “UNCORRELATED” 01 = (1 − f ↑ )* f ↓ μ 2 P μ 11 = f ↑ * f ↓ 1 P 1 11 0.9 STRONGLY 0.8 0.7 CORRELATED 0.6 01 10 0.5 11 = 0 P 0.4 0.3 10 = P 01 = γ 2 /( γ 1 + 2 γ 2 ) P 0.2 00 0.1 P 00 = γ 1 /( γ 1 + 2 γ 2 ) 0 -0.2 0 0.2 0.4 0.6 0.8 Supriyo Datta 13 Network for Computational Nanotechnology

  14. 4 levels: USCF versus exact nano HUB .org online simulations and more Unrestricted SCF γ 2 / � γ = U 0 ( N − � / U i N i ) 1 1 0.9 μ 2 USCF plateaus have μ 1 0.8 wrong width: U 0 /2 0.7 wrong height: 1/N 0.6 0.5 Exact 0.4 Fock space 0.3 Restricted SCF approach = 0.2 U i U N 0 0.1 0 -0.5 0 0.5 1 1.5 2 Supriyo Datta 14 Network for Computational Nanotechnology

  15. Equilibrium is different … nano HUB .org online simulations and more SCF: Restricted γ 2 / � γ � / Exact 1 and unrestricted μ 2 4 μ 1 3.5 3 of electrons Non-equilibrium Number 2.5 2 μ 1 = μ 2 ⇒ 1.5 1 Normalized 0.9 1 0.8 Current 0.7 0.5 0.6 0 0.5 -0.5 0 0.5 1 1.5 2 0.4 0.3 Equilibrium 0.2 0.1 0 -0.5 0 0.5 1 1.5 2 − qV D ⇒ Supriyo Datta 15 Network for Computational Nanotechnology

  16. Being “close” to equilibrium helps too nano HUB .org online simulations and more SCF: Restricted γ 2 / � γ � / Exact 1 and unrestricted μ 2 μ 1 ---> Closer ---> to equilibrium ---> γ 2 = γ 1 γ 2 = 100 γ 1 γ 2 = 10 γ 1 1 1 1 Normalized 0.9 0.8 0.8 0.8 Current 0.7 0.6 0.6 0.6 0.5 0.4 0.4 0.4 0.3 0.2 0.2 0.2 0.1 0 0 -0.5 0 0.5 1 1.5 2 -0.5 0 0.5 1 1.5 2 0 -0.5 0 0.5 1 1.5 2 − qV D ⇒ Supriyo Datta 16 Network for Computational Nanotechnology

  17. General “Fock space” approach nano HUB .org online simulations and more 2 one-electron 2^2 many-electron levels levels γ 2 / � γ E = 2 ε + U 0 � 11 / 1 ε + U 0 γ 1 (1 − f 1 ( ε + U 0 )) γ 1 f 1 ( ε + U 0 ) ε μ 1 μ 2 E = ε 01 10 γ 1 f 1 ( ε ) γ 1 (1 − f 1 ( ε )) E = 0 00 Supriyo Datta 17 Network for Computational Nanotechnology

  18. Equilibrium in “Fock space” nano HUB .org online simulations and more 11 E = 2 ε + U 0 γ 1 f 1 ( ε + U 0 ) γ 1 (1 − f 1 ( ε + U 0 )) γ 1 f 1 ( ε ) γ 1 (1 − f 1 ( ε )) 01 10 E = ε E = 0 ⇑ f 1 ( Δ E ) 00 P N + 1 e − ( Δ E − μ ) / k B T = = = ⇓ 1 − f 1 ( Δ E ) P N Law of γ 2 / � γ � / 1 Z e − ( E i − μ N i ) / k B T Equilibrium i = 1 P ε + U 0 ε No general solution μ 1 μ 2 out-of-equilibrium with µ 2 ≠ µ 1 Supriyo Datta 18 Network for Computational Nanotechnology

  19. Rate equations in “Fock space” nano HUB .org online simulations and more 11 γ 1 f 1 ( ε + U 0 ) E = 2 ε + U 0 γ 1 f 1 ( ε + U 0 ) + γ 2 f 2 ( ε + U 0 ) + γ 2 f 2 ( ε + U 0 ) 01 10 E = ε γ 1 f 1 ( ε ) γ 1 f 1 ( ε ) + γ 2 f 2 ( ε ) E = 0 + γ 2 f 2 ( ε ) 00 ⎧ ⎫ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ∗ 0 0 P 00 P 00 ⎪ ⎪ ⎪ ⎪ ⎢ ⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ∗ ⎪ P 01 0 0 P 01 d ⎢ ⎥ ⎨ ⎬ = ⎨ ⎬ = ⎨ ⎬ ⎢ ⎥ ∗ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ dt P 10 0 0 P 10 ⎢ ⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ∗ ⎩ ⎭ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭ P 11 0 0 P 11 Each column 0 0 0 0 adds to zero Supriyo Datta 19 Network for Computational Nanotechnology

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend