lecture 2 error estimation and control for problems with
play

Lecture 2 Error Estimation and Control for Problems with Uncertain - PowerPoint PPT Presentation

Lecture 2 Error Estimation and Control for Problems with Uncertain Coefficients Serge Prudhomme D epartement de math ematiques et de g enie industriel Polytechnique Montr eal DCSE Fall School 2019 TU Delft, The Netherlands,


  1. Lecture 2 Error Estimation and Control for Problems with Uncertain Coefficients Serge Prudhomme D´ epartement de math´ ematiques et de g´ enie industriel Polytechnique Montr´ eal DCSE Fall School 2019 TU Delft, The Netherlands, November 4-8, 2019 S. Prudhomme (Polytechnique Montr´ eal) Problems with Uncertain Coefficients November 4-8, 2019 1 / 53

  2. Outline Outline Error estimation for PDEs with uncertain coefficients. Adaptive scheme. Numerical examples. “. . . It is not possible to decide (a) between h or p refinement and (b) whether one should enrich the approximation space V h or S h . . . better approaches, yet to be conceived, are consequently needed.” Spectral Methods for Uncertainty Quantification, Le Maˆ ıtre & Knio 2010 A few words about validation. Application of GOEE to Bayesian Inference. Numerical examples. S. Prudhomme (Polytechnique Montr´ eal) Problems with Uncertain Coefficients November 4-8, 2019 2 / 53

  3. Introduction Motivation A ( λ ; u ) = f ( λ ) → Q ( u ( λ )) A h ( λ ; u h ) = f h ( λ ) → Q ( u h ( λ )) � �� � � �� � M ( λ )= Q ( u ) M h ( λ )= Q ( u h ) Q h,N ( u ) Q N ( u ) λ 2 λ 2 λ λ 1 1 Surrogate model M h,N Surrogate model M N M h ≈ M h,N ( λ ) = Q ( u h,N ) M ≈ M N ( λ ) = Q ( u N ) S. Prudhomme (Polytechnique Montr´ eal) Problems with Uncertain Coefficients November 4-8, 2019 3 / 53

  4. Introduction References Le Maˆ ıtre et al., 2007, 2010 Polynomial chaos, Stochastic Galerkin, Burger’s equation Almeida and Oden, 2010 convection-diffusion, sparse grid collocation Butler, Dawson, and Wildey, 2011 Stochastic Galerkin, PC representation of the discretization error (ignore truncation error) Butler, Constantine, and Wildey, 2012 Ignore physical discretization error, pseudo-spectral projection, improved linear functional . . . Bryant, Wildey, Prudhomme, SIAMJUQ, 2015 Pseudo-spectral projection method, adaptivity with respect to quantities of interest S. Prudhomme (Polytechnique Montr´ eal) Problems with Uncertain Coefficients November 4-8, 2019 4 / 53

  5. Model Problem Model Problem and Discretization Model Problem: A ( λ ; u ) = f ( λ ) , ∀ x ∈ D where uncertain coefficients λ assumes the following representation: ∀ ξ ∈ Ω ∈ R n λ = λ ( ξ ) , (or Ξ ) Weak formulation for a given ξ : Find u ( ξ ) ∈ V such that B ξ ( u, v ) = F ξ ( v ) ∀ v ∈ V Finite element approximation: Find u h ( ξ ) ∈ V h ⊂ V such that ∀ v h ∈ V h B ξ ( u h , v h ) = F ξ ( v h ) S. Prudhomme (Polytechnique Montr´ eal) Problems with Uncertain Coefficients November 4-8, 2019 5 / 53

  6. Model Problem Surrogate Approximation Assume that the surrogate approximation of u h is given by: N � u h,N ( x, ξ ) = u h i ( x )Ψ i ( ξ ) i =0 where: i ( x ) ∈ V h ⊂ V , ∀ i = 0 , . . . , N . u h Ψ i ( ξ ) is a basis function in a finite subpace of L 2 (Ω) . The space L 2 (Ω) is endowed with the norm: � � � 1 / 2 ( v ( ξ )) 2 ρ ( ξ ) dξ � v � L 2 (Ω) = Ω where ρ ( ξ ) is the probability density function of ξ . S. Prudhomme (Polytechnique Montr´ eal) Problems with Uncertain Coefficients November 4-8, 2019 6 / 53

  7. Goal-oriented error estimation Goal-oriented error estimation (linear case) Quantity of interest (QoI): � Q ξ ( u ) = k ( x ) u ( x , ξ ) d x D Adjoint problem: Find p ( · , ξ ) ∈ V such that B ξ ( v, p ) = Q ξ ( v ) ∀ v ∈ V Error representation: Q ξ ( u ) − Q ξ ( u h ) = F ξ ( p ) − B ξ ( u h , p ) := R ξ ( u h ; p ) S. Prudhomme (Polytechnique Montr´ eal) Problems with Uncertain Coefficients November 4-8, 2019 7 / 53

  8. Goal-oriented error estimation Goal-oriented error estimation Error estimator: Q ξ ( u ) − Q ξ ( u h ) = R ξ ( u h ; p ) ≈ η ( ξ ) Orthogonality property: If p h ∈ V h then R ξ ( u h ; p h ) = 0 Higher-order approximation of adjoint solution: V , V h ⊂ � p ( ξ ) ∈ � Compute ˜ V ⊂ V and η ( ξ ) = R ξ ( u h ; ˜ p ) Other choices πp h − p h ) Local interpolation: R ξ ( u h ; p ) ≈ R ξ ( u h ; ˜ Residual based: R ξ ( u h ; p ) = B ξ ( e u , e p ) ≈ � η u ( ξ ) η p ( ξ ) 1 Becker & Rannacher 2001, Oden & Prudhomme, 2001 S. Prudhomme (Polytechnique Montr´ eal) Problems with Uncertain Coefficients November 4-8, 2019 8 / 53

  9. Goal-oriented error estimation Case with Uncertain Parameters Goal is to estimate: � u h,N �� � � � � � � Q ξ u − Q ξ � L 2 (Ω) Adjoint solution: M � p M ( x, ξ ) = p ≈ ˜ p i ( x )Ψ i ( ξ ) ˜ i =0 where: V , i = 0 , . . . , M , with V h ⊂ � p i ( x ) ∈ � ˜ V ⊂ V . Ψ i ( ξ ) are the basis functions in a finite subpace of L 2 (Ω) . However, we can choose M = N . S. Prudhomme (Polytechnique Montr´ eal) Problems with Uncertain Coefficients November 4-8, 2019 9 / 53

  10. Goal-oriented error estimation Error Estimate � � � � � R ξ ( u h,N , ˜ p N ) η = � L 2 (Ω) where: R ξ ( u h,N , v ) = F ξ ( v ) − B ξ ( u h,N , v ) Such an estimate requires a large number of residual evaluations for the computation of the L 2 norm. Instead we compute: � � M � R ξ ( u h,N , ˜ p N ) ≈ R ξ ( u h,N , ˜ p N ) i Ψ i ( ξ ) := E ( ξ ) i =0 and consider estimate of total approximation error as: η ≈ �E ( ξ ) � L 2 (Ω) S. Prudhomme (Polytechnique Montr´ eal) Problems with Uncertain Coefficients November 4-8, 2019 10 / 53

  11. Goal-oriented error estimation Error decomposition Decomposition: � � � u h,N � � � � u h � � u h � � u h,N � Q ξ u − Q ξ = Q ξ u − Q ξ + Q ξ − Q ξ � �� � � �� � error due to error due to approx physical discretization in parameter space Bound on total error: � u h,N �� � u h �� � � � � � � � � � � � Q ξ u − Q ξ L 2 (Ω) ≤ � Q ξ u − Q ξ � � L 2 (Ω) � u h,N �� � u h � � � � + � Q ξ − Q ξ � L 2 (Ω) S. Prudhomme (Polytechnique Montr´ eal) Problems with Uncertain Coefficients November 4-8, 2019 11 / 53

  12. Goal-oriented error estimation Estimations of error constributions Physical space discretization error: � � � u h � � � u h ; ˜ Q ξ u − Q ξ ≈ R ξ p But: � �� N � � � � u h ; ˜ u h ; ˜ Ψ i ( ξ ) := E D ( ξ ) R ξ p ≈ R ξ p i i =0 with M = N . With the same expansion order for u h,N , ˜ p N , and E D , the coefficients of all three responses can be computed simultaneously. Then, by quadrature with m points: � u h �� � m � 1 / 2 � � � � � � � � � 2 ω k � E D ( ξ k ) � Q ξ u − Q ξ L 2 (Ω) ≈ � k =1 Parameter space discretization error: � � � u h � � u h,N � ≈ E ( ξ ) − E D ( ξ ) := E Ω ( ξ ) ⇒ � E Ω ( ξ ) � Q ξ − Q ξ L 2 (Ω) S. Prudhomme (Polytechnique Montr´ eal) Problems with Uncertain Coefficients November 4-8, 2019 12 / 53

  13. Adaptive Strategy Adaptivity Strategy � � E D � � � E Ω � � � if L 2 (Ω) > L 2 (Ω) Refine physical approximation space V h ( h ← h 2 ) else Refine random approximation space S N ( N ← N + 1 ) end for a given physical mesh, refine approximation in Ω to the level of physical discretization error use error indicator to guide h refinement in parameter space anisotropic p -refinement in higher dimensions S. Prudhomme (Polytechnique Montr´ eal) Problems with Uncertain Coefficients November 4-8, 2019 13 / 53

  14. non-Intrusive approach Pseudo-spectral projection method Model Problem: A ( λ ; u ) = f ( λ ) , ∀ x ∈ D where uncertain coefficients λ assumes the following representation: ∀ ξ ∈ Ω ∈ R n λ = λ ( ξ ) , (or Ξ ) Non-intrusive approach (“pseudo-spectral projection method”): N N � � u m k ( x )Ψ k ( ξ ) := u N ( x , ξ ) u ( x , ξ ) ≈ u k ( x )Ψ k ( ξ ) ≈ k =0 k =0 where � m ( N ) � u ( x , ξ j ) Ψ k ( ξ j ) w j := u m u k ( x ) := u ( x , ξ )Ψ k ( ξ ) ρ ( ξ ) d ξ ≈ k ( x ) Ω j =1 S. Prudhomme (Polytechnique Montr´ eal) Problems with Uncertain Coefficients November 4-8, 2019 14 / 53

  15. non-Intrusive approach Model Problem and Discretization Gaussian quadrature: Select quadrature rule { ξ j , w j } m ( N ) according to probability density ρ . j =1 Parameterized discrete solution (the surrogate/reduced model): Solve for u h ( x , ξ j ) . Then: m ( N ) � u h,m u h ( x , ξ j ) Ψ k ( ξ j ) w j ( x ) = k j =1 and N � u h,m u h,N ( x , ξ ) = ( x )Ψ k ( ξ ) k k =0 S. Prudhomme (Polytechnique Montr´ eal) Problems with Uncertain Coefficients November 4-8, 2019 15 / 53

  16. Numerical results Example 1: Smooth response surface in 2D Convection-diffusion problem in 2D: � π � � 10 sin � 2 ξ 1 in D = (0 , 1) 2 −∇ · (2 ∇ u ) + · ∇ u = f ( ξ ) 10 cos ( πξ 2 ) u = 0 on ∂D Loading f is chosen such that, with ξ 1 , ξ 2 ∼ U (0 , 1) : � ξ 1 ( x − ξ 1 ) 2 �� ξ 2 ( y − ξ 2 ) 2 � ξ 1 ( x − x 2 ) e − 20 ξ 2 ( y − y 2 ) e − 20 u ( x, y, ξ ) = 400 Quantity of interest: � 1 � 1 � Q ( u ( · , ξ )) = 1 u ( x, y, ξ ) dxdy ≈ q ( x, y ) u ( x, y, ξ ) dxdy 4 0 . 5 0 . 5 D S. Prudhomme (Polytechnique Montr´ eal) Problems with Uncertain Coefficients November 4-8, 2019 16 / 53

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend