lax and pseudo presheaves and exponentiability susan
play

Lax and Pseudo Presheaves and Exponentiability Susan Niefield, Union - PowerPoint PPT Presentation

Lax and Pseudo Presheaves and Exponentiability Susan Niefield, Union College Categories whose objects are sets: morphisms f : X Y functions Set R : X Y relations R X Y Rel 2 category A A : X Y spans Span


  1. Lax and Pseudo Presheaves and Exponentiability Susan Niefield, Union College

  2. Categories whose objects are sets: morphisms f : X → Y functions Set R : X − �→ Y relations R ⊆ X × Y Rel 2 − category A A : X − → Y spans Span ◦ ✁ ❆ ✁ ☛ ❆ ❯ X Y B ◦ A = A × Y B bicategory

  3. IDEA Consider the topos Set B op of Set -valued presheaves on B Replace Set by a bicategory S and consider lax or pseudo-functors B op → S When S is Rel or Span , and morphisms are map-valued op-lax transformation, the result is a category When is it a topos?

  4. Lax( B op , Span ) OBJECTS: lax functors X : B op → Span • a set X b , for every object b → X b , for every β : b → b ′ • a span X β : X b ′ − ◦ with η : X b → X id b and µ : X β ′ × X b ′ X β → X β ′ β s.t. . . . f b ′ ✲ X b ′ Y b ′ MORPHSIMS: families f b : X b → Y b with s.t. . . . ✲ X β ◦ ◦ Y β fβ ❄ ❄ ✲ X b Y b f b Lax( B op , Span ) ≃ Lax N ( B op , Prof ), normal lax functors X : B op → Span exponentiable iff ˆ X : B op → Prof pseudo-functor [S]

  5. ANOTHER VIEW OF Lax( B op , Span ) Lax( B op , Span ) ≃ Cat /B p : X → B is exponentiable iff factorization lifting (FL) holds where (FL) = Giraud-Conduch´ e condition [G],[C] = α ′′ ✲ x x ′′ X ······· x ′ ······· ✒ α ′ α ❘ (WFL) + connectivity condition p pα ′′ ✲ px px ′′ ❄ ❅ � ✒ ❅ B β ′ � β ❘ ❅ b ′

  6. x α ⊔ X b → x ′ α ∈ X β Φ . . − → . X �→ Lax( B op , Span ) pt Cat /B , ← − ❄ b β → b ′ B objects p : X → B subequivalences Φ: Lax( B op , Rel ) ≃ Cat f /B faithful exponentiables : X pres ◦ ↔ WFL [N] Φ: Lax( B op , Set ) ≃ DF /B discrete fibrations exponentiables : all Φ: Pseudo( B op , Span ) ≃ UFL /B unique factorization lifting exponentiables : ? Φ: Pseudo( B op , Rel ) ≃ DWFL( Cat f /B ) discrete WFL exponentiables : ?

  7. IS UFL /B A TOPOS? Lamarch (1996): conjectured UFL /B is a topos Bunge/Niefield (1998): UFL /B is a topos, for B with (IG), and coreflective in Cat/B , using “model-generated” categories [BN] Johnstone (1998): UFL /B is not cartesian closed when B is a square and is a topos when B has (CFI), using sheaves [J] Bunge/Fiori (1998): (IG) iff (CFI), and UFL /B is a topos for B with (IG), using sheaves [BF]

  8. UFL /B coreflective in Cat /B ⇒ UFL /B is a topos Theorem 1. = Cat /B ( X, Z Y ) Proof. UFL /B ( X × B Y, Z ) ∼ = Cat /B ( X × B Y, Z ) ∼ = UFL /B ( X, � ∼ Sub UFL /B ( X → B ) ∼ = Sub UFL ( X ) ∼ Z Y ) and = Cat ( X, Ω) ∼ = Cat /B ( X, Ω × B ) ∼ � = UFL /B ( X, Ω × B ), where Ω is the UFL subobject classifier in Cat . Pseudo( B op , Span ) coreflective in Lax( B op , Span ) ⇒ Corollary. Pseudo( B op , Span ) is a topos UFL /B is coreflective in Cat /B ⇐ ⇒ (IG) Theorem 2. later Proof.

  9. Given β : b → b ′ , consider the category [ [ β ] ] · ✑ ✸ ◗ ✲ b ′ ✑ s ◗ Objects: Morphisms: b b ′ b ◗ ✸ ✑ s ◗ ✑ · ◗ ✸ ✑ ❄ ◗ s ✑ · The interval glueing condition (IG) [ β ′ ] [ [1 b ′ ] ] ✲ [ ] (*) ❄ ❄ [ β ′ β ] [ [ β ] ] ✲ [ ] → b ′ β ′ β → b ′′ is a pushout in Cat , for all b − −

  10. UFL /B is coreflective in Cat /B ⇐ ⇒ (IG) Theorem 2. Proof. Suppose UFL /B is coreflective in Cat /B . Then (*) is a pushout in UFL /B ⇒ (*) is a pushout in Cat /B ⇒ (*) is a pushout in Cat . The converse was proved in [BN]. Pseudo( B op , Span ) is coreflective in Lax( B op , Span ) Corollary. ⇒ (IG), and in this case, Pseudo( B op , Span ) is a topos ⇐

  11. Is Pseudo( B op , Rel ) a topos? No, i is mono and epi ( fi = gi ⇒ f = g since p is faithful), but i is not iso in DWFL( Cat f /B ) ≃ Pseudo( B op , Rel ) f i ✲ x ′ x ′ ✲ ✲ x x X ✲ g ❍❍❍❍❍❍❍❍❍❍ ✟ ✟ ✟ ✟ ✟ ✟ p ✟ ✟ ❄ ✟ ❥ ✟ ✙ b ′ b ✲ Is Pseudo( B op , Rel ) cartesian closed? Sometimes A variation of the proof of Theorem 1 shows it is cartesian closed if Pseudo( B op , Rel ) is coreflective in Lax N ( B op , Rel )

  12. REFERENCES [BF] Bunge and Fiori, Unique factorization lifting and categories of processes, Math. Str. Comp. Sci. 10 (2000) 137–163 [BN] Bunge and Niefield, Exponentiability and single universes, JPAA 148 (2000), 217–250 [C] Conduch´ e, Au sujet de l’existance d’adjoints ` a droite aux foncteurs “image r´ eciproque” dans la cat´ egorie des cat´ egories, C. R. Acad. Sci. Paris 275 (1972), 891–894. [G] Giraud, M´ ethode de la descent, Bull. Math. Soc. France, Mem. 2 (1964) [J] Johnstone, A note on discrete Conduch´ e fibrations, TAC 5 (1999), 1–11 [N] Niefield, Change of base for relational variable sets, TAC 12 (2004), 248–261 [S] Street, Powerful functors, expository note (2001) [W] Worytkiewicz, Synchronization from a categorical perspective, arXiv:cs/0411001v1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend