exponentiability in double categories and the glueing
play

Exponentiability in Double Categories and the Glueing Construction - PowerPoint PPT Presentation

Exponentiability in Double Categories and the Glueing Construction Susan Niefield Union College Schenectady, NY July 2019 Idea What are the exponentiable objects Y in a double category s D 1 D 1 D 0 D 1 D 0 ? id


  1. Exponentiability in Double Categories and the Glueing Construction Susan Niefield Union College Schenectady, NY July 2019

  2. � Idea What are the “exponentiable” objects Y in a double category s ⊙ � D 1 � D 1 × D 0 D 1 � D 0 ? id • t For C at , P os , T op , L oc , and T opos , can show directly: Y is exponentiable in D ⇐ ⇒ Y is exponentiable D 0 Showed they satisfy D 1 ≃ D 0 / 2 , generalizing Artin-Wraith glueing. [N 2012; JPAA]

  3. Goal To prove: Y is exponentiable in D ⇐ ⇒ Y is exponentiable in D 0 in a general theorem assuming D 1 ≃ D 0 / 2 plus ... Plan 1. Double categories and the examples 2. Glueing categories 3. Lax Functors and Adjoints 4. Exponentiability in double categories

  4. � � � � Double Categories A double category D is a (pseudo) category object in CAT s ⊙ � D 1 � D 1 × D 0 D 1 � D 0 id • t Objects: objects of D 0 � Y of D 0 Horizontal morphisms: morphisms f : X Vertical morphism: objects of D 1 , denoted by v : X s X t • Cells: morphisms of D 1 , denoted by f s � Y s X s X s Y s ϕ v � • • w X t X t Y t Y t f t

  5. � � � � � � � � � � Double Categories: Examples [N 2012; JPAA] O ( f s ) � O ( Y s ) O ( X s ) O ( X s ) O ( Y s ) � Y , • X s X t T op : top spaces X , X � O ( X t ) , • • v � ⊇ w O ( X s ) cont maps O ( X t ) O ( X t ) O ( Y t ) O ( Y t ) lex O ( f t ) f s � Y s X s X s Y s � Y , X s L oc : locales X , X X t , v � w • • ≥ • locale maps lex X t X t Y t Y t f t f s � Y s X s X s Y s � Y , X s T opos : S -toposes X , X X t , • v � • • w geom. morph. lex X t X t Y t Y t f t

  6. � � � � � � � Double Categories: Examples (cont.) f s � Y s X s X s Y s � Y , X s C at : categories X , X X t , • v � • • w functors profunctors X t X t Y 1 Y 1 f t f s � Y s X s X s Y s � Y , X s P os : posets X , X X t , • v � • • w ≤ monotone order ideals X t X t Y 1 Y 1 f t

  7. � � � � � � � � Glueing Categories (G1) D 0 has finite limits (G2) id • : D 0 � D 1 has a left adjoint Γ with unit i s � Γ v X s X s Γ v id • γ v v � • • “ cotabulator ” Γ v X t X t Γ v Γ v i t � D 0 / 2 is an equivalence, where 2 = Γ( id • (G3) Γ 2 : D 1 1 ), and the following are pullbacks in D 0 i s � Γ v i t � Γ v Γ v Γ v X s X s X t X t and Γ 2 v Γ 2 v 1 1 2 2 1 1 2 2 i s i t (G4) D is “horizontally invariant”

  8. � Glueing Categories: Examples T op : Given v : O ( X s ) O ( X t ), define Γ v = X s ⊔ X t with • U = U s ⊔ U t open, if U s , U t are open and U t ⊆ v ( U s ) 2 is the Sierpinski space L oc : Γ v defined by “Artin-Wraith glueing” along v 2 is the Sierpinski locale O ( 2 ) T opos : Γ v defined by “Artin-Wraith glueing” along v 2 is the Sierpinski topos S 2

  9. Glueing Categories: Examples, cont. C at : Γ v is the “collage” of the profunctor v | Γ v | = | X s | ⊔ | X t | , morphisms in X s , X t , and via v 2 is the arrow category P os : Γ v is the “collage” of the ideal v 2 is the non-discrete 2-point poset Note Companions and conjoints are used for Γ − 1 in the examples, 2 but not in general, so they are not part of glueing categories.

  10. Lax Functors Definition � E consists of functors F 0 : D 0 � E 0 and A lax functor F : D � E 1 compatible with s and t , and cells F 1 : D 1 � F 1 ( id • � F 1 ( w ⊙ v ) id • X ) and F 1 w ⊙ F 1 v F 0 X satisfying naturality and coherence conditions. Oplax and pseudo functors are defined with the cells in the opposite direction and invertible, respectively. Get a 2-category LxDbl of double categories and lax functors. Note Why LxDbl ?

  11. Adjoints in LxDbl Lemma (Grandis/Par´ e 2004) � E , and The following are equivalent for a lax functor F : D � D 0 and G 1 : E 1 � D 1 compatible with s, t. functors G 0 : E 0 (a) G is lax and F ⊣ G in LxDbl . (b) F 0 ⊣ G 0 , F 1 ⊣ G 1 , and G is lax. (c) F 0 ⊣ G 0 , F 1 ⊣ G 1 , and F is oplax. Definition (Aleiferi 2018) D is pre-cartesian (cartesian) if D ∆ � D × D and D ! � 1 have (pseudo) right adoints × and 1. Proposition Every glueing category is pre-cartesian. Proof. ∆, ! are pseudo, and D 1 ≃ D 0 / 2 has finite limits since D 0 does.

  12. Exponentiability in Pre-cartesian Double Categories Definition An object Y is pre-exponentiable in D if the lax functor � D has a right adjoint in LxDbl , and D is − × Y : D pre-cartesian closed if every object is pre-exponentiable. Theorem If Y is pre-exponentiable in D , then − × Y is oplax and Y is exponentiable in D 0 . The converse holds, if D is a glueing category. Proof. By the Lemma, Y is pre-exp iff − × Y is oplax and Y , id • Y are exp � 2 ) via D 1 ≃ D 0 / 2 , which is in D 0 , D 1 , resp. But, id • Y �→ ( Y × 2 exp in D 1 when Y is exp in in D 0 , and so the result follows. Note For Proposition and Theorem, horizontal invariance of D is used to show compatibility with s , t required in the Lemma.

  13. Exponentiability: Examples From [N, 2012; TAC]: − × Y is pseudo, if Y is exponentiable in D 0 , for D = C at , P os , T op , L oc , T opos , and so for these D : Corollary Y is pre-exponentiable in D ⇐ ⇒ Y is exponentiable in D 0 . In particular, C at and P os are pre-cartesian closed. Note In [N 2012; TAC], we assumed more, i.e., D is fibrant. What can we add to (G1) - (G4) so that − × Y will be oplax for all glueing categories? How can we deal with ⊙ ?

  14. � � � � � � � � � � � � � � � � � � � � � Exponentiability: Examples, cont. Suppose D 0 has pushouts and consider the pushout 3 1 1 1 ❘ ❘ ❉ ❘ ❉ ❘ ❘ ❉ i 0 ❘ ❘ ❘ i s ❘ ❘ ❉ ❘ ❉ ❘ ❘ ❉ ❘ ❘ ❘ id • γ 2 2 2 3 3 3 i 01 • 1 ❧ ❧ ❧ ③ ❧ ③ ❧ ❧ i t ③ ❧ 1 1 1 ❧ ❧ ❘ ❧ i s ❘ ❧ ❉ � 2 ③ i 1 ❘ ❧ ❉ ❘ ③ 1 1 2 ❧ ❘ ❧ ❉ i 0 ③ ❘ ❧ ❘ 1 1 1 ❧ ❘ i s ❘ ❘ ❉ ❘ ❉ ❘ ❘ ❉ ❘ ❘ ❘ i t i 12 id • γ 2 2 2 3 3 3 i 02 • 1 ❧ ❧ ❧ ③ ❧ ③ ❧ ❧ i t ③ 2 2 3 3 1 1 1 ❧ ❧ ❘ ❧ ❧ ❘ ❉ ❧ i 01 ❘ ③ i 2 ❉ ❘ ❧ ❘ ③ ❧ ❉ i 1 ❧ ❘ ③ ❧ ❘ ❘ 1 1 1 ❧ i s ❘ ❘ ❉ ❘ ❉ ❘ ❘ ❉ ❘ ❘ ❘ id • γ 2 2 2 3 3 3 i 12 • 1 ❧ ❧ ❧ ③ ❧ ③ ❧ ❧ i t ③ ❧ ❧ ❧ ❧ ❧ ③ i 2 ❧ ③ ❧ ❧ ③ ❧ 1 1 1 ❧ where i 02 is induced by vertically pasting along i 1 = i 12 i s = i 01 i t .

  15. � � � � � � � � � Exponentiability: Examples, cont. The diagram below induces a morphism j s.t. ( ⋆ ) is commutative. X s X s ▼ ▼ ▼ j � Γ w ⊔ X t Γ v � γ v Γ v Γ v Γ v v • Γ( w ⊙ v ) Γ( w ⊙ v ) Γ w ⊔ X t Γ v ❘ ❘ ❘ qqq ❘ Γ w ⊔ X t Γ v Γ w ⊔ X t Γ v X t X t X t X t ( ⋆ ) ▼ ▼ ▼ ❧ ❧ ❧ � γ w Γ w Γ w Γ w w • 2 2 3 3 q q q i 02 X u X u Definition We say D has the 02-pullback condition if D 0 has pushouts and v � w � ( ⋆ ) is a pullback, for all X s X u . X t • • Note C at , P os , T op , L oc , and T opos satisfy the 02-pullback condition.

  16. � � � � � Exponentiability: Examples, cont. Corollary Suppose D is a glueing category with the 02-pullback condition. Y is pre-exponentiable in D ⇐ ⇒ Y is exponentiable in D 0 Proof. (Sketch) ϕ � ( w ⊙ v ) × Y . It suffice to show Γ ϕ is iso, for ( w × Y ) ⊙ ( v × Y ) � Γ( w × Y ) ⊔ X t × Y Γ( v × Y ) Γ(( w × Y ) ⊙ ( v × Y )) Γ(( w × Y ) ⊙ ( v × Y )) Γ(( w × Y ) ⊙ ( v × Y )) Γ( w × Y ) ⊔ X t × Y Γ( v × Y ) Γ ϕ � Γ(( w ⊙ v ) × Y ) Γ(( w ⊙ v ) × Y ) ∼ pb = Y exp in D 0 ∼ = � � (Γ w ⊔ X t Γ v ) × Y Γ( w ⊙ v ) × Y Γ( w ⊙ v ) × Y Γ( w ⊙ v ) × Y Γ( w ⊙ v ) × Y Γ( w ⊙ v ) × Y (Γ w ⊔ X t Γ v ) × Y (Γ w ⊔ X t Γ v ) × Y (Γ w ⊔ X t Γ v ) × Y pb 2 2 3 3 i 02

  17. ◮ E. Aleiferi, Cartesian Double Categories with an Emphasis on Characterizing Spans, Ph.D. Thesis, Dalhousie University, 2018 (https://arxiv.org/abs/1809.06940). ◮ M. Grandis and R. Par´ e, Adjoints for double categories, Cahiers de Top. et G´ eom. Diff. Cat´ eg. 45 (2004), 193–240. ◮ S. B. Niefield, The glueing construction and double categories, J. Pure Appl. Algebra 216 (2012), 1827–1836. ◮ S. B. Niefield, Exponentiability via double categories, Theory Appl. Categ. 27, (2012), 10–26.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend