laurette tuckerman laurette pmmh espci fr
play

Laurette TUCKERMAN laurette@pmmh.espci.fr Numerical Methods for - PowerPoint PPT Presentation

Laurette TUCKERMAN laurette@pmmh.espci.fr Numerical Methods for Differential Equations in Physics Time stepping: t U = LU + N ( U ) 0 = LU + N ( U ) Steady state solving: Linear Stability Analysis: u = Lu + N U u Navier-Stokes Equations


  1. Laurette TUCKERMAN laurette@pmmh.espci.fr Numerical Methods for Differential Equations in Physics

  2. Time stepping: ∂ t U = LU + N ( U ) 0 = LU + N ( U ) Steady state solving: Linear Stability Analysis: λu = Lu + N U u Navier-Stokes Equations ∂ t U = − ( U · ∇ ) U − ∇ P + ν ∆ U = − ( I − ∇∇ − 2 ∇· )( U · ∇ ) U + ν ∆ U = N ( U ) + L U N U u ≡ − ( U · ∇ ) u − ( u · ∇ ) U A U u = N U u + Lu Must solve λu = Lu + N U u

  3. Linear Stability Analysis λu = Lu + N U u How to calculate eigenpairs ( λ, u ) ? 1) Direct: Diagonalisation = QR decomposition Storage: M 2 Time: M 3 3D case with M x = M y = M z = 10 2 = ⇒ M = 10 6 M 2 = 10 12 M 3 = 10 18 2) Iterative: Calculate a few desired eigenpairs. Use only matrix-vector products u → Au To diagonalise an arbitrary matrix, Each product u → Au requires M 2 operations � M 3 Generating M eigenpairs requires M iterations Can gain: If A is structured or sparse, then u → Au takes ∼ M ops Aim method at desired eigenvalues.

  4. Power method Aψ j = λ j ψ j where | λ 1 | > | λ 2 | > · · · � u = u j ψ j j � Au = u j λ j ψ j j . . . � � � λ 2 � N � λ 3 � N u 2 u 3 � A N u = u j λ N j ψ j = λ N 1 u 1 ψ 1 + ψ 2 + ψ 3 + . . . u 1 λ 1 u 1 λ 1 j ↑ ↑ converges to first evec first error term Rayleigh quotient: � λ N − 1 � A N − 1 u, A N u � u 1 ψ 1 , λ N 1 u 1 ψ 1 � 1 � A N − 1 u, A N − 1 u � ≈ = λ 1 � λ N − 1 u 1 ψ 1 , λ N − 1 u 1 ψ 1 � 1 1 What if we want more than one eigenvalue? What if we want an eigenvalue which is not the dominant one (largest | λ | )?

  5. M ATRIX T RANSFORMATIONS If A u = λ u then f ( A ) u = f ( λ ) u f ( A ) = � j f j A j f j chosen dynam- ically to extract desired eigenvalues: principle of A RPACK f ( A ) = e A ∆ t f ( A ) = A − 1 (Sorensen et al.)

  6. E XPONENTIAL P OWER M ETHOD u n +1 = ( I − ∆ tL ) − 1 ( I + ∆ tN U ) u n ≈ e ∆ t ( L + N U ) u n Approximation valid for ∆ t ≪ 1 Time-stepping linearized evolution equation Enhancement factor at each iteration is � � e ∆ tλ 1 � � � � � � 1 where λ 1 > λ 2 > · · · � � e ∆ tλ 2 �

  7. I NVERSE P OWER M ETHOD u n +1 = ( L + N U ) − 1 u n Solve matrix equation using iterative method if necessary Enhancement factor at each iteration is � � λ 2 � � � ≫ 1 for λ 1 ≈ 0 � � λ 1 � Can shift to find eigenvalues closest to s � � λ 2 − s � � � ≫ 1 for λ 1 ≈ s � � � λ 1 − s

  8. A XISYMMETRIC S PHERICAL C OUETTE F LOW

  9. A XISYMMETRIC S PHERICAL C OUETTE F LOW

  10. A XISYMMETRIC S PHERICAL C OUETTE F LOW Leading Basic flow at eigenvector Re = 650

  11. Eigenvalues of Spherical Couette Flow Obtained from inverse power power method with shift

  12. B OSE -E INSTEIN C ONDENSATION Ultra-cold coherent state of matter Predicted by Bose (1924) and Einstein (1925) Realized experimentally by Cornell, Ketterle, Wieman (1995) Nobel prize (2001) Gross-Pitaevskii / Nonlinear Schr¨ odinger Equation ∂ t Ψ = i [ 1 + µ − V ( r ) − a | Ψ | 2 2∆ ]Ψ � �� � ���� N L V (x) = 1 2 | ω · x | 2 = 1 2( ω r r 2 + ω z z 2 ) (cylindrical trap) Spatial discretisation up to M = 10 2 × 10 2 × 10 2 = 10 6 Eigenvalues, energies determine decay rates of condensate

  13. 2000 1300 1200 1600 E + E E 1 + E 1100 1 1200 1000 E E � � 900 800 8.0 2.0 2 2 � � + + 4.0 2 1.0 1 � 2 1 � 0.0 0.0 2 2 � � E G E G � � N N −1.0 N N −4.0 1400 1600 1800 2000 2200 800 1000 1200 1400 1600 1800 N N ω z = ω r / 5 (cigar) ω r = ω z / 5 (pancake) Hamiltonian saddle-node bifurcation of hyperbolic and elliptic fixed points 1 1 1 1 1 1 1 1 1 1 1 1 1 1

  14. A B 0.075 0.075 0.05 0.05 0.025 0.025 p p 0 0 Q- Q Q - Q + + -0.025 -0.025 -0.05 -0.05 -0.075 -0.075 -0.2 -0.1 0 0.1 0.2 -0.2 -0.1 0 0.1 0.2 q q C D 0.075 ø 0.05 0.002 0.025 0.001 Q p + 0 q -0.4 -0.2 0.2 0.4 -0.025 -0.001 Q - -0.05 -0.002 -0.075 A -0.2 -0.1 0 0.1 0.2 C q B

  15. Hamiltonian Systems f ( A ) = A f ( A ) = e A ∆ t

  16. f ( A ) = A − 1 f ( A ) = A − 2

  17. S TEADY STATE SOLVING VIA N EWTON ’ S M ETHOD : 0 = L Ψ + N (Ψ) L INEAR STABILITY OF STEADY STATE Ψ : ∂ t ψ = i [(1 2∆ + µ − V ( r )) ψ − a Ψ 2 (2 ψ + ψ ∗ )] � ψ R � � ψ R � � � − ( L + DN I ) 0 A ≡ ψ I L + DN R ψ I 0 DN R ≡ µ − V (x) − 3 a Ψ 2 DN I ≡ µ − V (x) − a Ψ 2

  18. � ψ R � A 2 = ψ I � − ( L + DN I )( L + DN R ) � � ψ R � 0 − ( L + DN R )( L + DN I ) ψ I 0 Square, Shift and Invert: ( A 2 − s 2 I ) ψ n +1 = ψ n Sometimes it is easier to solve a preconditioned version: L − 2 ( A 2 − s 2 I ) ψ n +1 = L − 2 ψ n

  19. Floquet theory Linear equations with constant coefficients: ⇒ x ( t ) = α 1 e λ 1 t + α 2 e λ 2 t a ¨ x + b ˙ x + cx = 0 = aλ 2 + bλ + c = 0 where ⇒ x ( t ) = e ct x (0) x = cx = ˙ N N � � c n x ( n ) = 0 = α n e λ n t ⇒ x ( t ) = n =0 n =1 N � c n λ n = 0 where n =0 Generalize to linear equations with periodic coefficients: ⇒ x ( t ) = α 1 ( t ) e λ 1 t + α 2 ( t ) e λ 2 t a ( t )¨ x + b ( t ) ˙ x + c ( t ) x = 0 = a ( t ) , b ( t ) , c ( t ) have period T = ⇒ α 1 ( t ) , α 2 ( t ) have period T

  20. Floquet theory continued ⇒ x ( t ) = α 1 ( t ) e λ 1 t + α 2 ( t ) e λ 2 t a ( t )¨ x + b ( t ) ˙ x + c ( t ) x = 0 = α 1 ( t ) , α 2 ( t ) Floquet functions λ 1 , λ 2 Floquet exponents e λ 1 T , e λ 2 T Floquet multipliers λ 1 , λ 2 not roots of polynomial = ⇒ must calculate numerically or asymptotically ⇒ x ( t ) = e λt α ( t ) x = c ( t ) x = ˙ N N � � c n ( t ) x ( n ) = 0 = e λ n t α n ( t ) ⇒ x ( t ) = n =0 n =1

  21. Floquet theory and linear stability analysis Dynamical system: x = f ( x ) ˙ x ( t + T ) = x ( t ) with ˙ x ( t ) = f ( x ( t )) Limit cycle solution: Stability of x ( t ) : x ( t ) = x ( t ) + ǫ ( t ) ˙ f ( x ( t )) + f ′ ( x ( t )) ǫ ( t ) + . . . x + ˙ ǫ = f ′ ( x ( t )) ǫ ( t ) ǫ ˙ = e λt α ( t ) Floquet form! ǫ ( t ) = with α ( t ) of period T Re ( λ ) > 0 = ⇒ x ( t ) unstable Re ( λ ) < 0 = ⇒ x ( t ) stable λ complex = ⇒ most unstable or least stable pert has period different from x ( t )

  22. Region of stability for multiplier e λT for exponent λ Imaginary part non-unique = ⇒ choose Im ( λ ) ∈ ( − πi/T, πi/T ] In R N , x ( t ) stable iff real parts of all λ j are negative ˙ Monodromy matrix: M = Df ( x ( t )) M with M ( t = 0) = I Floquet multipliers/functions = eigenvalues/vectors of M ( T )

  23. Cylinder wake with downstream recirculation zone Ideal flow Von K´ arm´ an vortex street ( Re ≥ 46 ) Off Chilean coast Laboratory experiment past Juan Fernandez islands (Taneda, 1982)

  24. von K´ arman vortex street: Re = U ∞ d/ν ≥ 46 spatially: temporally: two-dimensional ( x, y ) periodic, St = fd/U ∞ (homogeneous in z ) appears spontaneously U 2 D ( x, y, t mod T )

  25. Stability analysis of von K´ arm´ an vortex street 2D limit cycle U 2 D ( x, y, t mod T ) obeys: ∂ t U 2 D = − (U 2 D · ∇ )U 2 D − ∇ P 2 D + 1 Re ∆U 2 D Perturbation obeys: ∂ t u 3 D = − (U 2 D ( t ) ·∇ )u 3 D − (u 3 D ·∇ )U 2 D ( t ) −∇ p 3 D + 1 Re ∆u 3 D Equation homogeneous in z , periodic in t = ⇒ u 3 D ( x, y, z, t ) ∼ e iβz e λ β t f β ( x, y, t mod T ) Fix β , calculate largest µ = e λ β T via linearized Navier-Stokes

  26. From Barkley & Henderson, J. Fluid Mech. (1996) mode A: Re c = 188 . 5 mode B: Re c = 259 β c = 1 . 585 = ⇒ λ c ≈ 4 β c = 7 . 64 = ⇒ λ c ≈ 1 Temporally: µ = 1 = ⇒ steady bifurcation to limit cycle with same periodicity as U 2 D Spatially: circle pitchfork (any phase in z )

  27. mode A at Re = 210 mode B at Re = 250 From M.C. Thompson, Monash University, Australia (http://mec-mail.eng.monash.edu.au/ ∼ mct/mct/docs/cylinder.html)

  28. Faraday instability Faraday (1831): Vertical vibration of fluid layer = ⇒ stripes, squares, hexagons In 1990s: first fluid-dynamical quasicrystals: Edwards & Fauve Kudrolli, Pier & Gollub J. Fluid Mech. (1994) Physica D (1998)

  29. Oscillating frame of reference = ⇒ “oscillating gravity” G ( t ) = g (1 − a cos( ωt )) G ( t ) = g (1 − a [cos( mωt ) + δ cos( nωt + φ 0 )]) Flat surface becomes linearly unstable for sufficiently high a Consider domain to be horizontally infinite (homogeneous) = ⇒ solutions exponential/trigonometric in x = ( x, y ) Seek bounded solutions = ⇒ trigonometric: exp( i k · x) � e i k · x ˆ Height ζ ( x, y, t ) = ζ k ( t ) k Oscillating gravity = ⇒ temporal Floquet problem, T = 2 π/ω � e λ j ˆ k t f j ζ k ( t ) = k ( t ) j

  30. � e i k · x ˆ Height ζ ( x, y, t ) = ζ k ( t ) k Ideal fluids (no viscosity), sinusoidal forcing = ⇒ Mathieu eq. t ˆ 0 [1 − a cos( ωt )] ˆ ∂ 2 ζ k + ω 2 ζ k = 0 ω 2 0 combines g , densities, surface tension, wavenumber k 2 � e λ j ˆ k t f j ζ k ( t ) = k ( t ) j =1 Re ( λ j ⇒ ˆ k ) > 0 for some j, k = ζ k ր = ⇒ flat surface unstable = ⇒ Faraday waves with wavelength 2 π/k Im ( λ j k ) e λT waves period 0 1 harmonic same as forcing ω/ 2 − 1 subharmonic twice forcing period

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend