cours dynamique non lin eaire laurette tuckerman laurette
play

Cours : Dynamique Non-Lin eaire Laurette TUCKERMAN - PowerPoint PPT Presentation

Cours : Dynamique Non-Lin eaire Laurette TUCKERMAN laurette@pmmh.espci.fr VII. Reaction-Diffusion Equations: 1. Excitability 2. Turing patterns 3. Lyapunov functionals 4. Spatial analysis and fronts Reaction-Diffusion Systems t u i =


  1. Cours : Dynamique Non-Lin´ eaire Laurette TUCKERMAN laurette@pmmh.espci.fr VII. Reaction-Diffusion Equations: 1. Excitability 2. Turing patterns 3. Lyapunov functionals 4. Spatial analysis and fronts

  2. Reaction-Diffusion Systems ∂ t u i = f i ( u 1 , u 2 , . . . ) + D i ∆ u i � �� � � �� � diffusion reaction Reactions f i couple different species u i at same location Diffusivity D i couples same species u i at different locations Describe oscillating chemical reactions, such as famous Belousov-Zhabotinskii reaction, discovered by two Soviet scientists in 1950s-1960s. Also describe phenomena in –biology (population biology, epidemiology, neurosciences) –social sciences (economics, demography) –physics

  3. Two species Spatially homogeneous ∂ t u = f ( u, v ) + D u ∆ u ∂ t u = f ( u, v ) ∂ t v = g ( u, v ) + D v ∆ v ∂ t v = g ( u, v ) FitzHugh-Nagumo model Barkley model � � f ( u, v ) = 1 u − v + b f ( u, v ) = u − u 3 / 3 − v + I ǫ u (1 − u ) a g ( u, v ) = 0 . 08 ( u + 0 . 7 − 0 . 8 v ) g ( u, v ) = u − v u -nullclines f ( u, v ) = 0 , v -nullclines g ( u, v ) = 0 , • steady states � f u f v � stable if eigenvalues of have negative real parts g u g v

  4. Excitability � � f ( u, v ) = 1 u − v + b ǫ u (1 − u ) g ( u, v ) = u − v a O ( ǫ − 1 ) ∂ t u = f = 0 separates ← − and − → ∂ t v = g = 0 separates ↑ and ↓ O (1) u = 1 excited phase u = 0 v ∼ 1 refractory phase u = 0 v ≪ 1 excitable phase u = ( v + b ) /a excitation threshold

  5. Waves in Excitable Medium Spatial variation + diffusion + excitability = ⇒ propagating waves Excitable media in physiology: –neurons –cardiac tissue (the heart) Pacemaker periodically emits electrical signals, propagated to rest of heart

  6. Simulations from Barkley model , Scholarpedia Spiral waves in 2D Spiral waves in 3D

  7. Turing patterns Instability of homogeneous solutions (¯ u, ¯ v ) to reaction-diffusion systems � 0 = f (¯ � 0 = f (¯ � � u, ¯ v ) u, ¯ v ) + D u ∆¯ u = ⇒ 0 = g (¯ u, ¯ v ) 0 = g (¯ u, ¯ v ) + D v ∆¯ v What about stability? Does diffusion damp spatial variations? Linear stability analysis: � u ( x, t ) = ¯ � σ ˜ � � ue σt + i k · x v − D u k 2 ˜ u + ˜ u = f u ˜ u + f v ˜ u = ⇒ ve σt + i k · x v − D v k 2 ˜ v ( x, t ) = ¯ v + ˜ σ ˜ v = g u ˜ u + g v ˜ v � f u − D u k 2 f v � f u f v � D u 0 � � � − k 2 M k ≡ = g v − D v k 2 g u g u g v 0 D v If D u = D v ≡ D , then σ k ± = σ 0 ± − k 2 D ≤ σ 0 ± (¯ u, ¯ v ) stable to homogeneous perturbations = ⇒ (¯ u, ¯ v ) stable to inhomogeneous perturbations. Diffusion is stabilizing.

  8. Alan Turing (famous WW II UK cryptologist, founder of computer science) 1952: homogeneous state can be unstable if D u � = D v For instability, need Tr k > 0 or Det k < 0

  9. For instability, need Tr k > 0 or Det k < 0 � Tr 0 = f u + g v < 0 � and Homogeneous stability ⇐ ⇒ Det 0 = f u g v − f v g u > 0 Tr k = f u + g v − ( D u + D v ) k 2 = Tr 0 − ( D u + D v ) k 2 < Tr 0 < 0 So for instability, need Det k < 0 Det k = f u g v − f v g u + D u D v k 4 − ( D v f u + D u g v ) k 2 D u D v k 4 − ( D v f u + D u g v ) k 2 = Det 0 + � �� � � �� � > 0 > 0 , dominates for k ≫ 1 Find negative minimum for intermediate k 2 : � d Det k � = 2 D u D v k 2 0 = ∗ − ( D v f u + D u g v ) � d k 2 � k ∗ ∗ = D v f u + D u g v k 2 = ⇒ need D v f u + D u g v > 0 2 D u D v

  10. Need Det k < 0 at k 2 ∗ = ( D v f u + D u g v ) / (2 D u D v ) : 0 > Det k | k ∗ = Det 0 + D u D v k 4 ∗ − ( D v f u + D u g v ) k 2 ∗ = Det 0 + ( D v f u + D u g v ) 2 − 2( D v f u + D u g v ) 2 4 D u D v 4 D u D v = Det 0 − ( D v f u + D u g v ) 2 4 D u D v 0 > 4 D u D v ( f u g v − f v g u ) − ( D v f u + D u g v ) 2 Collecting the four conditions: Tr 0 = f u + g v < 0 Det 0 = f u g v − f v g u > 0 2 D u D v k 2 ∗ = D v f u + D u g v > 0 4 D u D v Det k | k ∗ = 4 D u D v ( f u g v − f v g u ) − ( D v f u + D u g v ) 2 < 0

  11. Turing patterns were first produced experimentally: –in 1990 by de Kepper et al. at Univ. of Bordeaux –in 1992 by Swinney et al. at Univ. of Texas at Austin Turing pattern in a chlorite- iodide-malonic acid chemical laboratory experiment. From R.D. Vigil, Q. Ouyang & H.L. Swinney, Turing patterns in a simple gel reactor , Physica A 188, 17 (1992) Might be mechanism for: –differentiation within embryos –formation of patterns on animal coats, e.g. zebras and leopards

  12. Lyapunov functionals 1D systems: no limit cycles, usually just convergence to fixed point Generalize to multidimensional variational, potential, or gradient flows: d u du i dt = − ∂ Φ dt = −∇ Φ ⇐ ⇒ ∂u i For gradient flow, Jacobian is Hessian matrix:   ∂ 2 Φ / ( ∂u 1 ∂u 1 ) ∂ 2 Φ / ( ∂u 1 ∂u 2 ) . . . ∂ 2 Φ / ( ∂u 2 ∂u 1 ) ∂ 2 Φ / ( ∂u 2 ∂u 2 ) . . .   H = −   . . . . . . . . . H symmetric = ⇒ no complex eigenvalues = ⇒ no Hopf bifurcations d Φ ∂ Φ du i ∂ Φ ∂ Φ � � = −|∇ Φ | 2 dt = dt = − ∂u i ∂u i ∂u i i i Φ decreases monotonically, either to −∞ or to point where d u /dt = −∇ Φ = 0 = ⇒ no limit cycles

  13. Generalize to reaction-diffusion systems involving potential Φ( u ) : ∂t = −∇ Φ + ∂ 2 u ∂ u on x lo ≤ x ≤ x hi ∂x 2 Boundary conditions: u( x lo ) = u lo u( x hi ) = u hi Dirichlet ∂ u ∂ u or Neumann (homogeneous) ∂x ( x lo ) = 0 ∂x ( x hi ) = 0 Define free energy or Lyapunov functional: � x hi � � � 2 � + 1 ∂ u( x, t )) � � F (u) ≡ dx Φ(u( x, t )) � � 2 � ∂x � � �� � x lo potential energy � �� � kinetic energy Seek quantity analogous to gradient: F (x + dx) = F(x) + ∇ F(x) · dx + O( | dx | ) 2 for all dx The functional derivative δ F /δ u is defined to be such that � x hi dx δ F δ u · δ u + O ( δ u) 2 for every δ u F (u + δ u) = F (u) + x lo

  14. Expand: � 2 � � x hi � � Φ(u + δ u) + 1 ∂ (u + δ u) � � F (u + δ u) = dx � � 2 � ∂x � x lo � 2 � � x hi � � Φ(u) + ∇ Φ(u) · δ u + . . . + 1 ∂x + ∂δ u ∂ u � � = dx ∂x + . . . � � 2 � � x lo � 2 � � x hi � � Φ(u) + 1 ∂ u � � = dx � � 2 � ∂x � x lo � x hi � � ∇ Φ(u) · δ u + ∂ u ∂x · ∂δ u + O ( δ u) 2 + dx ∂x x lo Integrate by parts: � x hi � x hi � ∂ u � x hi dx∂ 2 u dx ∂ u ∂x · ∂δ u ∂x = ∂x · δ u − ∂x 2 · δ u x lo x lo x lo � ∂ u ∂x ( x lo ) = ∂ u ∂x ( x hi ) = 0 for Neumann BCs Surface term vanishes since δ u( x lo ) = δ u( x hi ) = 0 for Dirichlet BCs

  15. � 2 � � x hi � x hi � � � � ∇ Φ(u) − ∂ 2 u ∂ u � � · δ u+ O ( δ u) 2 F (u+ δ u)= dx Φ(u) + + dx � � ∂x 2 � ∂x � x lo x lo The functional derivative δ F /δ u is defined to be such that � x hi dx δ F δ u · δ u + O ( δ u) 2 for every δ u = F (u + δ u) = F (u) + ⇒ x lo � x hi � x hi � � ∇ Φ(u) − ∂ 2 u dx δ F δ u · δ u = dx · δ u ∂x 2 x lo x lo Choosing δ u to be delta function centered on any x and pointing in any vector direction leads to pointwise equality: δ u = ∇ Φ(u) − ∂ 2 u δ F ∂x 2 = − ∂ u ∂t

  16. d F 1 = lim ∆ t [ F ( t + δt ) − F ( t )] dt ∆ t → 0 1 = lim ∆ t [ F (u( t + ∆ t )) − F (u( t ))] ∆ t → 0 � � � � 1 u( t ) + ∂ u = lim F ∂t ∆ t + . . . − F (u( t )) ∆ t ∆ t → 0 � x hi � � 1 dxδ F δ u · ∂ u = lim F (u( t )) + ∂t ∆ t + . . . − F (u( t )) ∆ t ∆ t → 0 x lo �� x hi � 1 dxδ F δ u · ∂ u = lim ∂t ∆ t + . . . ∆ t ∆ t → 0 x lo � x hi � x hi � � dxδ F δ u · ∂ u − ∂ u · ∂ u = ∂t = dx ∂t ∂t x lo x lo � x hi � � 2 ∂ u � � = − dx ≤ 0 � � � ∂t � x lo F decreases so limit cycles cannot occur. Can be applied in higher spatial dimensions via volume integration and Gauss’s Divergence Theorem.

  17. Spatial Analysis and Fronts du + ∂ 2 u ∂u ∂t = − d Φ ∂x 2 Travelling wave solutions: u ( x, t ) = U ( x − ct ) with c = 0 for steady states ξ ≡ x − ct ∂u ∂t ( x, t ) = − c dU dξ ( ξ ) ∂ 2 u ∂x 2 ( x, t ) = d 2 U dξ 2 ( ξ ) Equation obeyed by steady states and travelling waves becomes du + d 2 u d 2 u − c du dξ = − d Φ dξ 2 = d Φ du − c du = ⇒ dξ 2 dξ Analogy between space and time = ⇒ x must be 1D

  18. Spatial analysis or Mechanical analogy d 2 u d ( − Φ) − c du = − dξ 2 du dξ � �� � ���� � �� � “potential gradient” “acceleration” “friction” u ξ position time � � 2 du E ( ξ ) ≡ − Φ + 1 du velocity − Φ potential energy dξ 2 dξ d 2 u − c du acceleration friction dξ 2 dξ � � 2 � � du E = dE d − Φ + 1 ˙ = dξ dξ 2 dξ d 2 u = − d Φ du dξ + du dξ 2 du dξ  � du < 0 if c > 0 � � du � 2 du + d 2 u − d Φ  = dξ = − c = 0 if c = 0 dξ 2 dξ  > 0 if c < 0 � “Increase in energy” � c < 0 ⇐ ⇒ ⇐ ⇒ just leftwards motion “Negative friction”

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend