symmetry reflection symmetry
play

Symmetry Reflection Symmetry Symmetric 2D Antisymmetric 2D vector - PowerPoint PPT Presentation

Cours : Dynamique Non-Lin eaire Laurette TUCKERMAN laurette@pmmh.espci.fr Symmetry Reflection Symmetry Symmetric 2D Antisymmetric 2D vector field vector field u u ( x, y ) ( x, y ) v v Group table for {


  1. Cours : Dynamique Non-Lin´ eaire Laurette TUCKERMAN laurette@pmmh.espci.fr Symmetry

  2. Reflection Symmetry Symmetric 2D Antisymmetric 2D vector field vector field � u � � − u � κ ( x, y ) ≡ ( − x, y ) v v Group table for { I, κ } : I κ I I κ κ κ I

  3. Other reflection operators ( κf )( x ) ≡ f ( − x ) κa ≡ − a a = g ( a ) ˙ Evolution equation: System has reflection symmetry ⇐ ⇒ g is equivariant ⇐ ⇒ gκ = κg ( gκ )( a ) = ( κg )( a ) ⇐ ⇒ g ( − a ) = − g ( a ) ⇐ ⇒ g odd a = g 1 a + g 3 a 3 = ( g 1 + g 3 a 2 ) a = ⇒ ˙ = ⇒ pitchfork bif to cubic order

  4. � a � � − a � � 0 � � 0 � � a � � a � κ ≡ = ⇒ κ = κ = − and s s s s 0 0 � a � � g � d = G ( a, s ) ≡ ( a, s ) s h dt � g � � g � κ ( a, s ) = κ ( a, s ) h h � − g � � g � ( a, s ) = ( − a, s ) h h � g � � � g 10 a + g 11 as + g 30 a 3 + g 12 as 2 ( a, s ) = h 00 + h 01 s + h 20 a 2 + h 02 s 2 + h 21 a 2 s + h 03 s 3 h � � ( g 10 + g 11 s + g 12 s 2 + g 30 a 2 ) a = h 00 + h 01 s + h 02 s 2 + h 03 s 3 + ( h 20 + h 21 s ) a 2 � ˜ � � a � � 0 � g ( a 2 , s ) a + ˜ g ( a 2 , s ) h ( a 2 , s ) = = ˜ ˜ h ( a 2 , s ) 0 1 h = ˜ ˜ invariants: ˜ g = ˜ gκ, hκ equivariant: ( g, h ) κ = κ ( g, h )

  5. Solutions to κ -equivariant systems are not all symmetric. (That is why bifurcation theory is interesting.) If ( a, s ) is a solution to a κ -equivariant system then κ ( a, s ) ≡ ( − a, s ) is also a solution. Asymmetric solutions ( a, s ) , a � = 0 come in pairs ( ± a, s ) . If a κ -equivariant system has a unique solution, then that solution is symmetric. e.g. linear system, or Navier-Stokes equations at low Re

  6. Linear system G which commutes with κ : Gu = λu κGu = κλu Gκu = λκu ( λ, κu ) is also an eigenpair of G . κu could be a multiple of u : κu = cu κ 2 u = κcu u = c 2 u � 1 = ⇒ u is symmetric c = − 1 = ⇒ u is antisymmetric Or else if u and κu are linearly independent, then: u + κu is symmetric eigenvector u − κu is antisymmetric eigenvector

  7. Verify equivariance of Navier-Stokes equations � ( κf ) ′ ( x ) = − f ′ ( − x ) ( κf )( x ) ≡ f ( − x ) = ⇒ ( κf ) ′′ ( x ) = f ′′ ( − x ) Demonstration: Let ˜ f ( x ) ≡ ( κf )( x ) ≡ f ( − x ) f ( x + ∆ x ) − ˜ ˜ f ( x ) lim ˜ f ′ ( x ) ≡ ∆ x → 0 ∆ x ∆ x → 0 f ( − x − ∆ x ) − f ( − x ) lim = ∆ x ∆ x → 0 f ( − x + ∆ x ) − f ( − x ) lim = − f ′ ( − x ) = − ∆ x

  8. � � u �� � − ( u∂ x + v∂ y ) u − ∂ x p + ν ( ∂ 2 � x + ∂ 2 y ) u ( NS ) ( x, y ) ≡ ( x, y ) v − ( u∂ x + v∂ y ) v − ∂ y p + ν ( ∂ 2 x + ∂ 2 y ) v � � u �� � − u � κ ( x, y ) ≡ ( − x, y ) v v � � u �� � � u �� ? ( NS ) κ ( x, y ) = κ ( NS ) ( x, y ) v v � − [ − ( u∂ x + v∂ y ) u − ∂ x p + ν ( ∂ 2 � x + ∂ 2 y ) u ] ( − x, y ) − ( u∂ x + v∂ y ) v − ∂ y p + ν ( ∂ 2 x + ∂ 2 y ) v Boundary conditions & external forces determine if problem is κ -equivariant:

  9. κ ⇓ κ ⇓ κ ⇓ Not equivalent flows

  10. Rotations and reflections of the plane Z 2 Z 3 Z 4 . . . SO (2) D 2 D 3 D 4 . . . O (2)

  11. Natural representation of O (2) on ( x, y ) uses z = x + iy S θ z ≡ e iθ z κz ≡ ¯ z κS θ z = κ ( e iθ z ) = e − iθ ¯ z z = e iθ ¯ S θ κz = S θ ¯ z κS θ z = S − θ κz ( S θ 0 w )( ρ, θ ) ≡ w ( ρ, θ + θ 0 ) ( κw )( ρ, θ ) ≡ w ( ρ, − θ )

  12. Circle Pitchfork � f mn z m ¯ z n f ( z, ¯ z ) = m,n z ) = ¯ z m z n z m z n κf ( z, ¯ z ) = f ( z, ¯ f mn ¯ f ( κ ( z, ¯ z )) = f mn ¯ f real z ) = e iθ f ( z, ¯ S θ f ( z, ¯ z ) f ( S θ ( z, ¯ z )) n = f mn ( e iθ z ) m ( e iθ z ) = e iθ f mn z m ¯ z n = f mn e imθ z m e − inθ ¯ z n m − n = 1 or f mn = 0 z 2 + · · · z ) = f 10 z + f 21 z 2 ¯ z + f 32 z 3 ¯ f ( z, ¯ = ( f 10 + f 21 | z | 2 + f 32 | z | 4 + · · · ) z ˜ f ( | z | 2 ) z = | z | 2 invariant z equivariant

  13. Circle Pitchfork z = ( µ − α | z | 2 ) z ˙

  14. Circle Pitchfork z = ( µ − | z | 2 ) z ˙ Cartesian Form: y = µ ( x + iy ) − ( x 2 + y 2 )( x + iy ) x + i ˙ ˙ x = µx − ( x 2 + y 2 ) x ˙ y = µy − ( x 2 + y 2 ) y ˙ Polar Form: θ ) e iθ = ( µ − r 2 ) re iθ r + ir ˙ ( ˙ r = µr − r 3 ˙ ˙ θ = 0 Subcritical Form: z = ( µ + | z | 2 ) z ˙

  15. Stability of origin (use Cartesian coordinates): �� � µ − (3 x 2 + y 2 ) � µ 0 � � − 2 xy � J ( x = 0 , y = 0) = = µ − ( x 2 + 3 y 2 ) � − 2 xy 0 µ (0 , 0) double eigenvalue µ . Stability of states on circle (use polar coordinates): �� � µ − 3 r 2 0 � − 2 µ 0 � � J ( r = √ µ, θ ) = � = � √ µ,θ 0 0 0 0 eigenvalue − 2 µ along r and marginal eigenvalue 0 along θ . dw dt ( θ ) = F ( w )( θ ) F indep of θ 0 = F ( W ) W a steady solution on circle 0 = d F ( W ) = δ F ∂W Jacobian or Frechet derivative marginal eigenvector dθ δW ∂θ

  16. Drift Pitchfork r = ( µ − r 2 ) r ˙ ˙ θ = ζ ζ = ( r 2 − 1 − ζ 2 ) ζ ˙ µ < 0 0 ≤ µ ≤ 1 1 < µ r = √ µ r = √ µ r = 0 θ = θ 0 θ = θ 0 + ζt ζ = ±√ µ − 1 ζ = 0 ζ = 0

  17. Drift Pitchfork Speed at onset is slow: ζ = √ µ − µ DP = √ µ − 1 Motion along the circle: group orbit Symmetry-breaking variable: ζ At µ = µ DP = 1 , Jacobian contains a Jordan block � � � 0 1 � ∂ ˙ ∂ ˙ θ θ ∂θ ∂ζ = ∂ ˙ ∂ ˙ 0 0 ζ ζ ∂θ ∂θ Function W ( θ ) is even about some θ 0 . Marginal and bifurcating eigenvectors are odd about θ 0 Drifting W is asymmetric in θ .

  18. Drift pitchfork in reaction-diffusion equations speed From Kness, Tuckerman & Barkley, Phys. Rev. A 46, 5054 (1992).

  19. O (2) and SO (2) Axisymmetric Taylor vortices Spiral Taylor vortices Tagg, Nonlinear Science Today 4, Antonijoan et al., Phys. Fluids 10, 1 (1994) . 829 (1995 .

  20. No requirement of κf = fκ = ⇒ f complex z = ( µ + iω − ( α + iβ ) | z | 2 ) z ˙ θ ) e iθ = (( µ − αr 2 ) + i ( ω + βr 2 )) r e iθ r + ri ˙ ( ˙ r = ( µ − αr 2 ) r ˙ ˙ θ = ω + βr 2 Breaking of SO (2) = ⇒ motion along θ direction

  21. Hopf bifurcation and O (2) symmetry Need four-dimensional eigenspace: u ( θ, t ) = ( z + ( t ) + z − ( t )) e iθ + (¯ z − ( t )) e − iθ z + ( t ) + ¯ where z ± are complex amplitudes (i.e. amplitude and phase) of left-going and right-going traveling waves. At linear order: � z + � � � d iωz + = z − − iωz − dt u ( θ, t ) = z + (0) e i ( θ + ωt ) + z − (0) e i ( θ − ωt ) +¯ z + (0) e − i ( θ + ωt ) +¯ z − (0) e − i ( θ − ωt ) z ± (0) arbitrary initial amplitudes. Addition of nonlinear terms compatible with O (2) symmetry greatly restricts possible equilibria.

  22. Appropriate representation of O (2) on ( z + , z − ) : S θ 0 ( z + , z − ) = ( e iθ 0 z + , e iθ 0 z − ) κ ( z + , z − ) = (¯ z − , ¯ z + ) Simplest cubic order equivariant evolution equations: � � � � z + � � µ + iω + a | z − | 2 + b ( | z + | 2 + | z − | 2 ) d z + � � = a | z + | 2 + ¯ b ( | z + | 2 + | z − | 2 ) z − µ − iω + ¯ z − dt Substitute z ± = r ± e iφ ± : r ± = ( µ + a r r 2 ∓ + b r ( r 2 + + r 2 ˙ − )) r ± ˙ φ ± = ± ( ω + a i r 2 ∓ + b i ( r 2 + + r 2 − )) Equations do not involve phases φ ± (all phases equivalent).

  23. Solutions with ˙ r ± = 0 : origin : r + = 0 , r − = 0 � − µ left traveling waves : r + = , r − = 0 , b r φ + = ω − µb i ˙ b r � − µ right traveling waves : r + = 0 , r − = , b r � � ω − µb i ˙ φ − = − b r � − 2 µ standing waves : r + = r − = , a r + 2 b r � � ω − 2 µ a i + 2 b i ˙ φ ± = ± a r + 2 b r

  24. 9800 0T 0.14T 9600 0.25T 0.39T 9400 0.5T h 9200 9000 8800 8600 π 2 π 0 θ Standing waves in Rayleigh-B´ enard convection in a cylinder with Γ = R/H = 1 . 47 and P r = 1 at at Ra = 26 000 . From Boro´ nska & Tuckerman, J. Fluid Mech. 559, 279 (2006).

  25. 9800 0T 0.25T 9600 0.5T 0.75T 9400 h 9200 9000 8800 8600 π 2 π 0 θ Travelling wave in Rayleigh-B´ enard convection in a cylinder with Γ = R/H = 1 . 47 and P r = 1 at Ra = 26 000 . From Boro´ nska & Tucker- man, J. Fluid Mech. 559, 279 (2006).

  26. 1.5 1.5 1.0 1.0 0.5 0.5 0.0 0.0 1.5 1.5 −0.5 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 1.0 1.0 0.5 0.5 0.0 0.0 2.5 2.0 5 −0.5 1.5 −0.5 4 1.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3 0.5 2 0.0 1 −0.5 0 −1 −1.0 −2 −1.5 −3 −2.0 −4 −2.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 −5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Standing waves Travelling waves Thermosolutal convection with S = − 0 . 1 , L = 0 . 1 , P r = 10 , r ≡ Ra/Ra c = 1 . 3 .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend