the superstring n point 1 loop amplitude
play

The superstring n-point 1-loop amplitude Carlos R. Mafra (With - PowerPoint PPT Presentation

The superstring n-point 1-loop amplitude Carlos R. Mafra (With Oliver Schlotterer, arXiv:1812. { 10969,10970,10971 } ) Supported by a Royal Society University Fellowship STAG Research Centre and Mathematical Sciences, University of Southampton,


  1. The superstring n-point 1-loop amplitude Carlos R. Mafra (With Oliver Schlotterer, arXiv:1812. { 10969,10970,10971 } ) Supported by a Royal Society University Fellowship STAG Research Centre and Mathematical Sciences, University of Southampton, UK C.R. Mafra (Southampton) March 2019 1 / 36

  2. Motivation Compute the n-point open superstring correlator at one loop using worldsheet methods C.R. Mafra (Southampton) March 2019 2 / 36

  3. Essential requirements Correlator K n ( ℓ ) defined by: � � � d D ℓ |I n ( ℓ ) | �K n ( ℓ ) � A n = d τ dz 2 dz 3 . . . dz n C top D top top such that: BRST invariant (ie susy and gauge invariant) 1 Q K n ( ℓ ) = 0 monodromy invariant 2 D K n ( ℓ ) = 0 C.R. Mafra (Southampton) March 2019 3 / 36

  4. Summary of results Correlators built from: kinematic factors in pure spinor superspace 1 worldsheet functions at genus one surface 2 Outcome: a beautiful Lie-polynomial structure n − 4 1 � �� � V A 1 T m 1 ... m r A 2 ,..., A r +4 Z m 1 ... m r � K n ( ℓ ) = A 1 ,..., A r +4 + 12 . . . n | A 1 , . . . , A r +4 r ! r =0 + corrections Duality between BRST and monodromy operators (BRST invariants vs generalized elliptic integrands) Q ↔ D C.R. Mafra (Southampton) March 2019 4 / 36

  5. Examples 4 points (Berkovits 2004) K 4 ( ℓ ) = V 1 T 2 , 3 , 4 Z 1 , 2 , 3 , 4 kinematic factor is BRST invariant V 1 T 2 , 3 , 4 ≡ 1 ( λγ m W 2 )( λγ m W 3 ) F 4 � � 3( λ A 1 ) mn + cyc (2 , 3 , 4) QV 1 T 2 , 3 , 4 = 0 worldsheet functions are monodromy invariant Z 1 , 2 , 3 , 4 ≡ 1 C.R. Mafra (Southampton) March 2019 5 / 36

  6. 5 point correlator K 5 ( ℓ ) = V 1 T m 2 , 3 , 4 , 5 Z m 1 , 2 , 3 , 4 , 5 + V 12 T 3 , 4 , 5 Z 12 , 3 , 4 , 5 + (2 ↔ 3 , 4 , 5) + V 1 T 23 , 4 , 5 Z 1 , 23 , 4 , 5 + (2 , 3 | 2 , 3 , 4 , 5) kinematic factors V A T B , C , D and V A T m B , C , D , E in pure spinor superspace with covariant BRST variations one-loop worldsheet functions Z A , B , C , D and Z m A , B , C , D , E from Kronecker–Einsestein series and loop momentum with covariant monodromy variations C.R. Mafra (Southampton) March 2019 6 / 36

  7. 5pt BRST & monodromy invariance There is a strong interplay between kinematics and worldsheet functions: The 5-pt correlator is BRST invariant due to a total derivative: � �� k m 2 Z m � Q K 5 ( ℓ ) = − V 1 V 2 T 3 , 4 , 5 1 , 2 , 3 , 4 , 5 + s 21 Z 21 , 3 , 4 , 5 + (1 ↔ 3 , 4 , 5) + (2 ↔ 3 , 4 , 5) ∼ = 0 The 5-pt correlator is single valued due to BRST cohomology ids (BRST exact terms) � �� k m 1 V 1 T m � D K 5 ( ℓ ) = Ω 1 2 , 3 , 4 , 5 + V 12 T 3 , 4 , 5 + 2 ↔ 3 , 4 , 5 � �� k m 2 V 1 T m � V 1 T 23 , 4 , 5 + 3 ↔ 4 , 5 + Ω 2 2 , 3 , 4 , 5 + V 21 T 3 , 4 , 5 + + (2 ↔ 3 , 4 , 5) ∼ = 0 C.R. Mafra (Southampton) March 2019 7 / 36

  8. Examples 6 point correlator K 6 ( ℓ ) = 1 2 V 1 T mn 2 , 3 , 4 , 5 , 6 Z mn 1 , 2 , 3 , 4 , 5 , 6 V 12 T m 3 , 4 , 5 , 6 Z m � � + 12 , 3 , 4 , 5 , 6 + (2 ↔ 3 , 4 , 5 , 6) V 1 T m 23 , 4 , 5 , 6 Z m � � + 1 , 23 , 4 , 5 , 6 + (2 , 3 | 2 , 3 , 4 , 5 , 6) � � + V 123 T 4 , 5 , 6 Z 123 , 4 , 5 , 6 + V 132 T 4 , 5 , 6 Z 132 , 4 , 5 , 6 + (2 , 3 | 2 , 3 , 4 , 5 , 6) � ( V 12 T 34 , 5 , 6 Z 12 , 34 , 5 , 6 + cyc (2 , 3 , 4)) + (2 , 3 , 4 | 2 , 3 , 4 , 5 , 6) � + � � + ( V 1 T 2 , 34 , 56 Z 1 , 2 , 34 , 56 + cyc (3 , 4 , 5)) + (2 ↔ 3 , 4 , 5 , 6) � � + V 1 T 234 , 5 , 6 Z 1 , 234 , 5 , 6 + V 1 T 243 , 5 , 6 Z 1 , 243 , 5 , 6 + (2 , 3 , 4 | 2 , 3 , 4 , 5 , 6) Nice combinatorics of Stirling set and cycle numbers: 2 1 � �� � V A 1 T m 1 ... m r A 2 ,..., A r +4 Z m 1 ... m r K 6 ( ℓ ) = � 12 . . . 6 | A 1 , . . . , A r +4 A 2 ,..., A r +4 + r ! r =0 C.R. Mafra (Southampton) March 2019 8 / 36

  9. 6pt anomaly cancellation (Green, Schwarz 84) 6pt correlator is not BRST invariant by itself However BRST variation is a total derivative on moduli space Q K 6 ( ℓ ) = − 1 ∂ ∂τ log I 6 ( ℓ ) ∼ 2 V 1 Y 2 , 3 , 4 , 5 , 6 Z mm 1 , 2 , 3 , 4 , 5 , 6 = − 2 π i V 1 Y 2 , 3 , 4 , 5 , 6 = 0 , where Y 2 , 3 , 4 , 5 , 6 is the anomaly kinematic factor (CM, Berkovits 2006) Y 2 , 3 , 4 , 5 , 6 ≡ 1 2( λγ m W 2 )( λγ n W 3 )( λγ p W 4 )( W 5 γ mnp W 6 ) To show this need identities for τ derivatives of the Kronecker-Eisenstein series, several BRST variations etc So anomaly cancels after summing over one-loop topologies for SO (32) (Green, Schwarz 84) C.R. Mafra (Southampton) March 2019 9 / 36

  10. Derivations C.R. Mafra (Southampton) March 2019 10 / 36

  11. Pure spinor amplitude prescription at one loop � � � � � dz U 2 · · · ( µ, b )( PCs ) V 1 (0) dz U n A 1 = moduli vertex operators using SYM superfields A α ( x , θ ), A m ( x , θ ), W α ( x , θ ) and F mn ( x , θ ) V = λ α A α ( x , θ ) , U = ∂θ α A α + A m Π m + d α W α + 1 2 N mn F mn CFT calculation: zero modes and OPEs OPEs among vertices organized using multiparticle superfields with covariant BRST variations (CM, Schlotterer ‘14) b ghost and PCOs complications bypassed by completing the known parts of the correlators from OPEs to BRST-invariant and single-valued answers C.R. Mafra (Southampton) March 2019 11 / 36

  12. SYM description in 10D Single-particle ( i is particle label) (Witten’86) K i ∈ { A i α , A m i , W α i , F mn } i Multiparticle ( B is a “word” with particle labels) K B ∈ { A B α , A m B , F mn B , W α B } Inspired by OPE computations and defined recursively, eg W α 1 = W α 1 12 = 1 2 ( k 2 · A 1 ) − (1 ↔ 2) W α 4( γ mn W 2 ) α F 1 mn + W α 12 + 1 123 = − ( k 12 · A 3 ) W α W α 4( γ rs W 3 ) α F 12 rs − (12 ↔ 3) + 1 2( k 1 · k 2 ) 2 ( A 1 · A 3 ) − (1 ↔ 2) W α � � C.R. Mafra (Southampton) March 2019 12 / 36

  13. Generalized SYM equations of motion Superfields in K B satisfy generalized SYM EOMs, eg 1 = 1 D α W β 4( γ mn ) αβ F 1 mn 12 = 1 D α W β 4( γ mn ) αβ F 12 mn + ( k 1 · k 2 )( A 1 α W β 2 − A 2 α W β 1 ) 123 = 1 D α W β 4( γ mn ) αβ F 123 mn + ( k 1 · k 2 ) A 1 α W β 23 + A 13 α W β � � 2 − (1 ↔ 2) + ( k 12 · k 3 ) A 12 α W β � � 3 − (12 ↔ 3) , In general: P = 1 D α W β � α W β α W β 4( γ mn ) αβ F P � A XR jS − A jR � ( k X · k j ) mn + , XS P = XjY Y = R ✁ S Similar EOMs for A B α , A m B , F mn B C.R. Mafra (Southampton) March 2019 13 / 36

  14. Generalized Jacobi symmetries The superfields K B satisfy generalized Jacobi symmetries 0 = K 12 + K 21 , 0 = K 123 + K 231 + K 312 , (Jacobi identity) 0 = K 1234 − K 1243 + K 3412 − K 3421 0 = K A ℓ ( B ) + K B ℓ ( A ) ℓ ( A ) is the Dynkin operator (left-to-right nested brackets) These are the same symmetries obeyed by nested commutators K 1234 ... p ≡ K ℓ ( P ) = K [ ... [[[1 , 2] , 3] , 4] ,..., p ] BCJ identities/numerators are natural in this framework BRST operator is λ α D α so multiparticle superfields lead to (a rich) BRST algebra, cohomology identities etc C.R. Mafra (Southampton) March 2019 14 / 36

  15. Zero-mode prescription and building blocks An analysis of the PS prescription leads to a zero-mode contribution of d α d β N mn from the vertices (Berkovits ‘04) Four points K 4 = � V 1 U 2 U 3 U 4 � ddN = � V 1 T 2 , 3 , 4 � where T 2 , 3 , 4 = 1 3( λγ m W 2 )( λγ m W 3 ) F mn + cyc (2 , 3 , 4) 4 Higher points: multiparticle version (CM, Schlotterer ‘12) T A , B , C = 1 3( λγ m W A )( λγ m W B ) F mn + cyc ( A , B , C ) C at 5pts V 12 T 3 , 4 , 5 , V 1 T 23 , 4 , 5 + perm Also tensorial generalization ( V A T mn ... B , C , D , E ,... ) C.R. Mafra (Southampton) March 2019 15 / 36

  16. One-loop superstring correlators C.R. Mafra (Southampton) March 2019 16 / 36

  17. Recalling: Lie polynomials A Lie polynomial is an expression written in terms of nested commutators Ree theorem If Z P satisfies shuffle symmetries Z A ✁ B = 0 and t p i are non-commutative indeterminates then Z p 1 p 2 p 3 ... t p 1 t p 2 t p 3 · · · � P is a Lie polynomial Example: Z 12 satisfies shuffle if it is antisymmetric, so Z 12 t 1 t 2 + Z 21 t 2 t 1 = Z 12 [ t 1 , t 2 ] is a Lie polynomial C.R. Mafra (Southampton) March 2019 17 / 36

  18. Lessons from tree-level (CM, Schlotterer, Stieberger 2011) n-point disk correlator can be rewritten in a suggestive way: K tree � Z tree Z tree � �� � = V n + perm (23 . . . n − 2) . 1 A V 1 A n − 1 , B V n − 1 , B n AB =23 ... n − 2 Worldsheet functions satisfy shuffle symmetries 1 1 Z tree Z tree 123 ... p ≡ − → A ✁ B = 0 z 12 z 23 . . . z p − 1 , p associated kinematics satisfy generalized Jacobi symmetries 2 V P ≡ λ α A P − → V A ℓ ( B ) + V B ℓ ( A ) = 0 α This has the same structure of a Lie polynomial! � Z tree V P P P C.R. Mafra (Southampton) March 2019 18 / 36

  19. Ansatz for one-loop correlators Tree-level reinterpretation key to unlock the one-loop correlators 1 Assume Lie-polynomial structure for one-loop correlators: � K n → Z A , B , C , D V A T B , C , D + · · · 2 kinematic factors V A T B , C , D satisfying generalized Jacobi symmetries 3 one-loop worldsheet functions Z A , B , C ,... satisfying shuffle symmetries Singular behaviour of Z A , B ,... as vertices collide is known from OPEs Unlike at tree-level, OPEs don’t determine the complete functions as regular pieces are not fixed by singularities The shuffle-symmetry requirement was very helpful in fixing the functions C.R. Mafra (Southampton) March 2019 19 / 36

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend