codimension two points the 1 2 mode interaction
play

Codimension-two points The 1:2 mode interaction System with O (2) - PowerPoint PPT Presentation

Laurette TUCKERMAN laurette@pmmh.espci.fr Codimension-two points The 1:2 mode interaction System with O (2) symmetry with competing wavenumbers m = 1 and m = 2 Solutions approximated as: u ( , t ) = z 1 ( t ) e i + z 2 ( t ) e 2 i + z 1


  1. Laurette TUCKERMAN laurette@pmmh.espci.fr Codimension-two points

  2. The 1:2 mode interaction System with O (2) symmetry with competing wavenumbers m = 1 and m = 2 Solutions approximated as: u ( θ, t ) = z 1 ( t ) e iθ + z 2 ( t ) e 2 iθ + ¯ z 1 ( t ) e − iθ + ¯ z 2 ( t ) e − 2 iθ with z 1 ( t ) = x 1 ( t ) + iy 1 ( t ) = r 1 ( t ) e iφ 1 ( t ) , z 2 ( t ) = x 2 ( t ) + iy 2 ( t ) = r 2 ( t ) e iφ 2 ( t ) O (2) generated by rotation by θ 0 and reflection about θ = 0 : S θ 0 ( z 1 , z 2 ) = ( e iθ 0 z 1 , e 2 iθ 0 z 2 ) κ ( z 1 , z 2 ) = ( ¯ z 1 , ¯ z 2 )

  3. Define � z 1 � F � ¯ � z 1 z 2 − z 2 z 2 → 1 Show that F is equivariant with respect to O (2) : � z 1 � F � ¯ � κ � z 1 ¯ � z 1 z 2 z 2 − z 2 z 12 z 2 → → − ¯ 1 � z 1 � κ � ¯ � F � z 1 ¯ � z 1 z 2 z 12 z 2 → z 2 ¯ → − ¯ � z 1 � F � ¯ � S θ 0 � e iθ 0 ¯ � z 1 z 2 z 1 z 2 − z 2 − e 2 iθ 0 z 2 z 2 → → 1 1 � z 1 � S θ 0 � e iθ 0 z 1 � F � e − iθ 0 ¯ z 1 e 2 iθ 0 z 2 � e 2 iθ 0 z 2 − e 2 iθ 0 z 2 z 2 → → 1 Essentially 1 + 1 = 2 and 2 − 1 = 1 Dynamical system for evolution of z 1 , z 2 is: µ 1 − α 1 | z 1 | 2 − β 1 | z 2 | 2 � � z 1 = ¯ ˙ z 1 z 2 + z 1 µ 2 − β 2 | z 1 | 2 − α 2 | z 2 | 2 � z 2 = − z 2 � ˙ 1 + z 2

  4. Steady states (Phase is arbitrary: z → x ) µ 1 − α 1 x 2 1 − β 1 x 2 � � �� 0 = x 1 x 2 + 2 0 = − x 2 µ 2 − β 2 x 2 1 − α 2 x 2 � � 1 + x 2 2 Trivial state: x 1 = x 2 = 0 Mode-two (“pure mode”) state: x 1 = 0 , x 2 � = 0 : x 2 2 = µ 2 /α 2 If x 1 � = 0 then x 2 � = 0 ! Instead, have “mixed-mode state”: µ 1 − α 1 x 2 1 − β 1 x 2 � � 0 = x 2 + 2 0 = − x 2 µ 2 − β 2 x 2 1 − α 2 x 2 � � 1 + x 2 2 (intersection of two conic sections)

  5. Stability Jacobian in Cartesian coordinates (even if y = 0 , Jacobian must include y ) x 2 + µ 1 − α 1 ( r 2 1 + 2 x 2 1 ) − β 1 r 2  y 2 − α 1 2 x 1 y 1 x 1 − β 1 2 x 1 x 2 y 1 − β 1 2 x 1 y 2  2 − x 2 + µ 1 − α 1 ( r 2 1 + 2 y 2 1 ) − β 1 r 2 y 2 + µ 1 − α 1 2 x 1 y 1 − y 1 − β 1 2 y 1 x 2 x 1 − β 1 2 x 2 y 1   2  µ 2 − β 2 r 2 1 − α 2 ( r 2 2 + 2 x 2  ± 2 x 1 − β 2 2 x 2 x 1 ∓ 2 y 1 + − β 2 2 x 2 y 1 2 ) − α 2 2 x 2 y y   µ 2 − β 2 r 2 1 − α 2 ( r 2 2 + 2 y 2 ± 2 y 1 + µ 2 − β 2 2 x 1 y 2 ± 2 y 1 y 2 α 2 2 x 2 y 2 2 ) Trivial state:   µ 1 0 0 0 0 µ 1 0 0   J =   0 0 µ 2 0     0 0 0 µ 2 Two 2D eigenspaces. Circle pitchforks at µ 1 = 0 and µ 2 = 0

  6. � Mode-two state: x 1 = y 1 = y 2 = 0 , x 2 = ± µ 2 /α 2 x 2 + µ 1 − β 1 x 2   0 0 0 2 − x 2 + µ 1 − β 1 x 2 µ 1 0 0  2  J =   µ 2 − 3 α 2 x 2 0 0 0  2  µ 2 − α 2 x 2 0 0 0 2 �   α 2 + µ 1 − β 1 µ 2 µ 2 ± 0 0 α 2  �  µ 2 α 2 + µ 1 − β 1 µ 2 0 ∓ 0 0   = α 2     0 0 − 2 µ 2 0   0 0 0 0 Eigenvalues − 2 µ 2 and 0 are usual results of circle pitchfork. Other two eigenvalues concern instability to ( x 1 , y 1 ) . They are different because mode-two state has a phase (no CP from mode-two). Mixed-mode branch bifurcates from trivial state at µ 1 = 0 and from mode-two branch at µ 2 � µ 2 µ 1 − β 1 ± = 0 α 2 α 2

  7. Polar representation z 1 ( t ) = r 1 ( t ) e iφ 1 ( t ) , z 2 ( t ) = r 2 ( t ) e iφ 2 ( t ) Evolution equations: r 1 + ir 1 ˙ φ 1 ) e iφ 1 = r 1 e − iφ 1 r 2 e iφ 2 + r 1 e iφ 1 � µ 1 − α 1 r 2 1 − β 1 r 2 � ( ˙ 2 φ 2 ) e iφ 2 = − r 1 e iφ 1 r 1 e iφ 1 + r 2 e iφ 2 � r 2 + ir 2 ˙ µ 2 − β 2 r 2 1 − α 2 r 2 � ( ˙ 2 Dividing equations by e iφ 1 and by e iφ 2 : φ 1 = r 1 r 2 e i ( φ 2 − 2 φ 1 ) + r 1 r 1 + ir 1 ˙ µ 1 − α 1 r 2 1 − β 1 r 2 � � ˙ 2 1 e i (2 φ 1 − φ 2 ) + r 2 r 2 + ir 2 ˙ φ 2 = − r 2 µ 2 − β 2 r 2 1 − α 2 r 2 � � ˙ 2 Separating real and imaginary parts and dividing imaginary parts by r j � = 0 : µ 1 − α 1 r 2 1 − β 1 r 2 � � r 1 = r 1 r 2 cos( φ 2 − 2 φ 1 ) + r 1 ˙ 2 ˙ φ 1 = r 2 sin( φ 2 − 2 φ 1 ) r 2 = − r 2 µ 2 − β 2 r 2 1 − α 2 r 2 � � ˙ 1 cos(2 φ 1 − φ 2 ) + r 2 2 ˙ φ 2 = − ( r 2 1 /r 2 ) sin(2 φ 1 − φ 2 )

  8. Substitute Φ ≡ 2 φ 1 − φ 2 : r 2 cos Φ + µ 1 − α 1 r 2 1 − β 1 r 2 � � r 1 = r 1 ˙ 2 r 2 = − r 2 µ 2 − β 2 r 2 1 − α 2 r 2 � � ˙ 1 cos Φ + r 2 2 ˙ � φ 1 − r 2 sin Φ ⇒ ˙ Φ = − (2 r 2 − r 2 = = 1 /r 2 ) sin Φ ˙ − ( r 2 1 /r 2 ) sin Φ φ 2 r 2 = ˙ Suppose ˙ r 1 = ˙ Φ = 0 , but r 1 , r 2 � = 0 0 = r 2 cos Φ + µ 1 − α 1 r 2 1 − β 1 r 2 2 0 = − r 2 µ 2 − β 2 r 2 1 − α 2 r 2 � � 1 cos Φ + r 2 2 0 = (2 r 2 2 − r 2 1 ) sin Φ Mixed modes ⇒ ˙ φ 1 = ˙ Φ = 0 , π = ⇒ sin Φ = 0 = φ 2 = 0 = ⇒ steady states: 0 = ± r 2 + µ 1 − α 1 r 2 1 − β 1 r 2 2 0 = ∓ r 2 µ 2 − β 2 r 2 1 − α 2 r 2 � � 1 + r 2 2

  9. Traveling Waves ˙ Φ = − (2 r 2 − r 2 0 = 1 /r 2 ) sin Φ ⇒ 0 = 2 r 2 2 − r 2 ⇒ r 2 1 = 2 r 2 sin Φ � = 0 = 1 = 2 Φ ≡ 2 ˙ ˙ φ 1 − ˙ 0 = φ 2 Definition: u ( θ, t ) = u ( θ − ct, 0) u ( θ, t ) = r 1 ( t ) e i ( φ 1 ( t )+ θ ) + r 2 ( t ) e i ( φ 2 ( t )+2 θ ) + complex conjugate u ( θ − ct, 0) = r 1 (0) e i ( φ 1 (0)+ θ − ct ) + r 2 (0) e i ( φ 2 (0)+2( θ − ct )) + complex conjugate � r 1 ( t ) = r 1 (0) and φ 1 ( t ) = φ 1 (0) − ct = ⇒ r 2 ( t ) = r 2 (0) and φ 2 ( t ) = φ 2 (0) − 2 ct = ⇒ 2 φ 1 ( t ) − φ 2 ( t ) = 2 φ 1 (0) − φ 2 (0) = ⇒ Φ( t ) = Φ(0)

  10. 0 = 2 r 2 2 − r 2 ⇒ r 2 1 = 2 r 2 = 1 2 r 1 = r 2 cos Φ + µ 1 − α 1 2 r 2 2 − β 1 r 2 0 = ˙ 2 r 2 = − 2 r 2 µ 2 − β 2 2 r 2 2 − α 2 r 2 � � 0 = ˙ 2 cos Φ + r 2 2 Add 2 × blue equation to ( 1 /r 2 ) × green equation 0 = 2 µ 1 + µ 2 − (4 α 1 + 2 β 1 + 2 β 2 + α 2 ) r 2 2 2 µ 1 + µ 2 r 2 2 = 4 α 1 + 2 β 1 + 2 β 2 + α 2 Can also obtain: µ 1 (2 α 2 + β 2 ) − µ 2 (2 α 1 + β 1 ) cos Φ = [(2 µ 1 + µ 2 )(4 α 1 + 2 β 1 + 2 α 2 + β 2 )] 1 / 2 Traveling waves bifurcate from mixed mode branch when | cos Φ | = 1 ⇐ ⇒ ( µ 1 (2 α 2 + β 2 ) − µ 2 (2 α 1 + β 1 )) 2 = (2 µ 1 + µ 2 )(4 α 1 + 2 β 1 + 2 α 2 + β 2 )

  11. Time-dependent states • Traveling waves via Hopf bif from mixed-mode branch • Modulated waves via secondary Hopf bif from traveling waves • Heteroclinic orbit connects two opposite-phase mode-two sad- dles with eigenvalues − λ − < 0 < λ + Can prove orbit is stable if λ − > λ + , i.e. if contraction more important than expansion � µ 2 � µ 2 � µ 2 � µ 2 − µ 1 − β 1 − > µ 1 − β 1 + α 2 α 2 α 2 α 2 µ 2 ⇐ ⇒ β 1 > µ 1 α 2

  12. Takens-Bogdanov normal form Meeting of Hopf and steady bifurcations x = y ˙ y = − µ 1 x + µ 2 y − x 3 − x 2 y ˙ Steady states: 0 = y ⇒ x = ±√− µ 1 0 = − µ 1 x − x 3 = Jacobian: � � 0 1 J = µ 1 − 3 x 2 − 2 xy µ 2 − x 2 � 0 �� µ 2 � ⇒ λ = µ 2 1 � 2 J (0 , 0) = = 2 ± − µ 1 µ 1 µ 2 2

  13. J is Jordan block at codimension-two point µ 1 = µ 2 = 0 Hopf bifurcation at µ 2 = 0 for µ 1 > 0 Pitchfork bifurcation at µ 1 = 0 Real eigenvalues coalesce to form complex conjugate pair At collision, imaginary part is zero At a nearby Hopf bifurcation, frequency is near zero = ⇒ period is near infinity

  14. Heteroclinic cycles in the French washing machine Caroline Nore LIMSI-CNRS, France Laurette Tuckerman Olivier Daube Shihe Xin θ

  15. The French Washing Machine (von Karman flow) Symmetry Group: Rotations in θ and Combined reflection in z and θ Rot/Ref don't commute ⇒ Ο(2) Douady, Brachet, Couder, Fauve et al Le Gal et al, Rabaud et al, Daviaud et al. Gelfgat et al, Lopez & Marques et al

  16. Numerical Methods Time-integration code for Navier-Stokes eqns by Daube Spatial: finite differences in (r,z), Fourier in θ Temporal: 2 nd order backward difference formula Adaptations: -Steady state solving via Newton for axisymmetric flows -Linear stability about axisymmetric and 3D flows

  17. Linear Stability of Basic Axisymmetric Flow z=1/3 z=0 z= − 1/3 m=2 m=1 pure mode mixed mode Re=410 Re=355

  18. Bifurcation Diagram for 1:2 mode interaction Normal Form quadratic terms Armbruster, Guckenheimer & Holmes; Proctor & Jones (1988)

  19. Mixed Mode (from m=1 eigenvector)

  20. Pure Mode (from m=2 eigenvector)

  21. Travelling Waves (Re=415) TW = Mixed Mode + Eigenvector Reflection-Symmetric Antisymmetric

  22. Two types of heteroclinic cycles 4 plateaus 2 plateaus

  23. Heteroclinic Cycle (Re=430) a b c d f e g h

  24. Linear stability analysis about nonaxisymmetric flows Eigenvalues about pure mode Eigenvalues about mixed mode

  25. Conclusion counter-rotating von Karman flow with diameter=height is almost perfect realisation of 1:2 mode interaction steady states (mixed and pure modes) travelling waves robust heteroclinic cycles of two kinds possible Kelvin-Helmholtz instability mechanism

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend