the gpd program in halls a c
play

The GPD program in Halls A & C Carlos Mu noz Camacho Institut - PowerPoint PPT Presentation

The GPD program in Halls A & C Carlos Mu noz Camacho Institut de Physique Nucl eaire, CNRS/IN2P3 (France) June 21, 2018 Joint Hall A and C Summer Meeting C. Mu noz Camacho (IPNO, CNRS/IN2P3) 3D structure of hadrons @ JLab &


  1. The GPD program in Halls A & C Carlos Mu˜ noz Camacho Institut de Physique Nucl´ eaire, CNRS/IN2P3 (France) June 21, 2018 Joint Hall A and C Summer Meeting C. Mu˜ noz Camacho (IPNO, CNRS/IN2P3) 3D structure of hadrons @ JLab & EIC 06/21/2018 1 / 35

  2. Introduction Outline 1 Introduction 2 Nucleon 3D-imaging & Generalized Parton Distributions (GPDs) 3 Deeply Virtual Compton Scattering (DVCS): ep → epγ 4 Experimental program at Jefferson Lab Recent results on DVCS and π 0 production Experiments at 12 GeV 5 Summary C. Mu˜ noz Camacho (IPNO, CNRS/IN2P3) 3D structure of hadrons @ JLab & EIC 06/21/2018 2 / 35

  3. Introduction Studying the structure of the nucleon experimentally Elastic scattering Deeply Inelastic Scattering Hard exclusive processes y y δ ~ 1 z Q y ⊥ ~ 1 δ z Q ⊥ xp xp r ⊥ r ⊥ z x z x z x p p p ρ ( ⊥ r ) f x ( ) ( , ) f x r ⊥ 0 r 0 0 r ⊥ r ⊥ ⊥ x x 1 1 Form factors Parton distributions Generalized Parton Nobel prize, 1969 Nobel prize, 1961 Nobel prize, 1990 Distributions (GPDs) C. Mu˜ noz Camacho (IPNO, CNRS/IN2P3) 3D structure of hadrons @ JLab & EIC 06/21/2018 3 / 35

  4. GPDs & DVCS Deeply Virtual Compton Scattering (DVCS): γ ∗ p → γ p High Q 2 Perturbative QCD Non-perturbative GPDs Handbag diagram Bjorken limit : � Q 2 = − q 2 → Q 2 ∞ x B = 2 Mν fixed ν → ∞ C. Mu˜ noz Camacho (IPNO, CNRS/IN2P3) 3D structure of hadrons @ JLab & EIC 06/21/2018 4 / 35

  5. GPDs & DVCS DVCS experimentally: interference with Bethe-Heitler At leading order in 1 /Q (leading twist) : d 5 → σ − d 5 ← ℑ m ( T BH · T DV CS ) σ = d 5 → σ + d 5 ← | BH | 2 + ℜ e ( T BH · T DV CS ) + | DV CS | 2 σ = � +1 dx H ( x, ξ, t ) T DV CS = x − ξ + iǫ + · · · = − 1 � +1 dxH ( x, ξ, t ) P − iπ H ( x = ξ, ξ, t ) + . . . x − ξ − 1 � �� � � �� � Access in helicity-independent cross section Access in helicity-dependent cross-section C. Mu˜ noz Camacho (IPNO, CNRS/IN2P3) 3D structure of hadrons @ JLab & EIC 06/21/2018 5 / 35

  6. GPDs & DVCS Leading twist GPDs 8 GPDs related to the different combination of quark/nucleon helicities 4 chiral-even GPDs: conserve the helicity of the quark Access through DVCS (and DVMP) C. Mu˜ noz Camacho (IPNO, CNRS/IN2P3) 3D structure of hadrons @ JLab & EIC 06/21/2018 6 / 35

  7. GPDs & DVCS Leading twist GPDs 8 GPDs related to the different combination of quark/nucleon helicities 4 chiral-odd GPDs: flip helicity of the quark “transversity GPDs” Experimental access more complicated ( π 0 electroproduction?) C. Mu˜ noz Camacho (IPNO, CNRS/IN2P3) 3D structure of hadrons @ JLab & EIC 06/21/2018 7 / 35

  8. GPDs & DVCS Kinematic coverage Kinematic complementarity between different facilities: C. Mu˜ noz Camacho (IPNO, CNRS/IN2P3) 3D structure of hadrons @ JLab & EIC 06/21/2018 8 / 35

  9. DVCS @ JLab The GPD experimental program at Jefferson Lab Hall A: high accuracy, limited kinematic coverage Hall B: wide kinematic range, limited precision Hall C: high precision program at 11 GeV Partially overlapping, partially complementary programs with different experimental setups The roadmap: Early results (2001) from non-dedicated experiment (CLAS) 1 st round of dedicated experiments in Halls A/B in 2004/5 2 nd round on 2008–2010: precision tests + more spin observables Compeling DVCS experiments in Halls A+B+C at 11 GeV ( � 2017) C. Mu˜ noz Camacho (IPNO, CNRS/IN2P3) 3D structure of hadrons @ JLab & EIC 06/21/2018 9 / 35

  10. DVCS @ JLab Recent results Experimental setup High Resolution Spectrometer 100-channel scintillator array 132-block PbF 2 electromagnetic calorimeter C. Mu˜ noz Camacho (IPNO, CNRS/IN2P3) 3D structure of hadrons @ JLab & EIC 06/21/2018 10 / 35

  11. DVCS @ JLab Recent results DVCS cross sections: azimuthal analysis Q 2 = 2 . 36 GeV 2 , x B = 0 . 37 , − t = 0 . 32 GeV 2 d 4 σ = T 2 BH + T BH R e ( T DVCS ) + T 2 DVCS R e ( T DVCS ) ∼ c I 0 + c I 1 cos φ + c I 2 cos 2 φ DVCS ∼ c DVCS + c DVCS T 2 cos φ 0 1 ∆ 4 σ = d 4 − → σ − d 4 ← − σ = I m ( T DVCS ) 2 I m ( T DVCS ) ∼ s I 1 sin φ + s I 2 sin 2 φ M. Defurne et al. Phys. Rev. C 92, 055202 (2015) C. Mu˜ noz Camacho (IPNO, CNRS/IN2P3) 3D structure of hadrons @ JLab & EIC 06/21/2018 11 / 35

  12. DVCS @ JLab Recent results DVCS cross sections: Q 2 –dependance No Q 2 -dependance within limited range ⇒ leading twist dominance C. Mu˜ noz Camacho (IPNO, CNRS/IN2P3) 3D structure of hadrons @ JLab & EIC 06/21/2018 12 / 35

  13. DVCS @ JLab Recent results DVCS cross sections: kinematical power corrections KM10a: global fit to HERA x-sec & HERMES + CLAS spin asymmetries Kumericki and Mueller (2010) C. Mu˜ noz Camacho (IPNO, CNRS/IN2P3) 3D structure of hadrons @ JLab & EIC 06/21/2018 13 / 35

  14. DVCS @ JLab Recent results DVCS cross sections: kinematical power corrections KM10a: global fit to HERA x-sec & HERMES + CLAS spin asymmetries Kumericki and Mueller (2010) Target-mass corrections (TMC): ∼ O ( M 2 /Q 2 ) and ∼ O ( t/Q 2 ) Braun, Manashov, Mueller and Pirnay (2014) C. Mu˜ noz Camacho (IPNO, CNRS/IN2P3) 3D structure of hadrons @ JLab & EIC 06/21/2018 13 / 35

  15. DVCS @ JLab E07-007 Rosenbluth-like separation of the DVCS cross section | BH | 2 | DV CS | 2 σ ( ep → epγ ) = + I ( BH · DV CS ) + � �� � � �� � � �� � Known to ∼ 1 % Linear combination of GPDs Bilinear combination of GPDs I∝ 1 /y 3 = ( k/ν ) 3 , � T DV CS � � � 2 ∝ 1 /y 2 = ( k/ν ) 2 BKM-2010 – at leading twist → 7 independent GPD terms: � � C I , C I ,V , C I ,A � � C DV CS ( F , F∗ ) . ℜ e , ℑ m ( F ) , and ϕ -dependence provides 5 independent observables: ∼ 1, ∼ cos ϕ, ∼ sin ϕ , ∼ cos(2 ϕ ) , ∼ sin(2 ϕ ) The measurement of the cross section at two or more beam energies for exactly the same Q 2 , x B , t kinematics, provides the additional information in order to extract all leading twist observables independently. C. Mu˜ noz Camacho (IPNO, CNRS/IN2P3) 3D structure of hadrons @ JLab & EIC 06/21/2018 14 / 35

  16. DVCS @ JLab E07-007 E07-007: DVCS beam-energy dependence Cross section measured at 2 beam energies and constant Q 2 , x B , t E = 4 . 5 GeV E = 5 . 6 GeV Leading-twist and LO simultaneous fit of both beam energies (dashed line) does not reproduce the data Light-cone axis in the ( q , q ′ ) plane (Braun et al.) : H ++ , � H ++ , E ++ , � E ++ C. Mu˜ noz Camacho (IPNO, CNRS/IN2P3) 3D structure of hadrons @ JLab & EIC 06/21/2018 15 / 35

  17. DVCS @ JLab E07-007 Beyond Leading Order (LO) and Leading Twist (LT) Two fit-scenarios: Light-cone axis in the ( q , q ′ ) plane (Braun et al.) LO/LT + HT H ++ , � H ++ , H 0+ , � H 0+ LO/LT + NLO H ++ , � H ++ , H − + , � H − + C. Mu˜ noz Camacho (IPNO, CNRS/IN2P3) 3D structure of hadrons @ JLab & EIC 06/21/2018 16 / 35

  18. DVCS @ JLab E07-007 E07-007: DVCS beam-energy dependence Cross section measured at 2 beam energies and constant Q 2 , x B , t 4 4 nb/GeV nb/GeV 4 σ Fit LT/LO d 0.2 ∆ σ Fit HT 4 0.1 KM15 0.1 0.05 0 0 0 100 200 300 0 100 200 300 Φ Φ (deg) (deg) Leading-twist and LO simultaneous fit of both beam energies (dashed line) does not reproduce the data Including either NLO or higher-twist effects (dark solid line) satisfactorily reproduce the angular dependence C. Mu˜ noz Camacho (IPNO, CNRS/IN2P3) 3D structure of hadrons @ JLab & EIC 06/21/2018 17 / 35

  19. DVCS @ JLab E07-007 DVCS 2 and I (DVCS · BH) separation DVCS 2 and I (DVCS · BH) separated in NLO and higher-twist scenarios 4 4 nb/GeV nb/GeV 0.04 0.01 0.03 DVCS 2 & I significantly 0.02 0.005 different in each scenario 0.01 0 0 Sizeable DVCS 2 contribution in the − 0.01 higher-twist scenario in − 0.005 − 0.02 the helicity-dependent 2 DVCS ++/-+ Interference ++/-+ cross section − 0.03 2 − DVCS ++/0+ 0.01 Interference ++/0+ − 0.04 0 100 200 300 0 100 200 300 Nature Commun. 8, 1408 (2017) Φ Φ (deg) (deg) C. Mu˜ noz Camacho (IPNO, CNRS/IN2P3) 3D structure of hadrons @ JLab & EIC 06/21/2018 18 / 35

  20. π 0 electroproduction DVCS @ JLab π 0 electroproduction ( ep → epπ 0 ) At leading twist: � dσ L dt = 1 N , h N ) | 2 ∝ 1 σ T ∝ 1 |M L ( λ M = 0 , h ′ 2Γ Q 6 Q 8 h N ,h N ′ � � 1 � � 1 � � � � dz φ π ( z ) 1 1 M L ∝ Γ 1 � H π 0 + Γ 2 � dx x − ξ + × E π 0 z x + ξ − 1 0 Different quark weights: flavor separation of GPDs � 2 � 1 H u + 1 u � − | d ¯ � � H d � | π 0 � = 1 2 {| u ¯ d �} H π 0 = √ √ 3 3 2 H DV CS = 4 9 H u + 1 9 H d | p � = | uud � C. Mu˜ noz Camacho (IPNO, CNRS/IN2P3) 3D structure of hadrons @ JLab & EIC 06/21/2018 19 / 35

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend