lattice envelopes
play

Lattice Envelopes Uri Bader Alex Furman Roman Sauer The Technion, - PowerPoint PPT Presentation

Lattice Envelopes Uri Bader Alex Furman Roman Sauer The Technion, Haifa University of Illinois at Chicago Universit at Regensburg AMS Special Meeting, 2010-11-05 1/11 Lattice Envelopes Definition A subgroup < G is a lattice in


  1. Lattice Envelopes Uri Bader Alex Furman Roman Sauer The Technion, Haifa University of Illinois at Chicago Universit¨ at Regensburg AMS Special Meeting, 2010-11-05 1/11

  2. Lattice Envelopes Definition ◮ A subgroup Γ < G is a lattice in a lcsc group G if Γ is discrete and Haar ( G / Γ) < ∞ . 2/11

  3. Lattice Envelopes Definition ◮ A subgroup Γ < G is a lattice in a lcsc group G if Γ is discrete and Haar ( G / Γ) < ∞ . Equivalently, Γ has a Borel fundamental domain F ⊂ G with m G ( F ) < ∞ . 2/11

  4. Lattice Envelopes Definition ◮ A subgroup Γ < G is a lattice in a lcsc group G if Γ is discrete and Haar ( G / Γ) < ∞ . Equivalently, Γ has a Borel fundamental domain F ⊂ G with m G ( F ) < ∞ . ◮ A lattice Γ < G is uniform if G / Γ is compact, non-uniform otherwise. 2/11

  5. Lattice Envelopes Definition ◮ A subgroup Γ < G is a lattice in a lcsc group G if Γ is discrete and Haar ( G / Γ) < ∞ . Equivalently, Γ has a Borel fundamental domain F ⊂ G with m G ( F ) < ∞ . ◮ A lattice Γ < G is uniform if G / Γ is compact, non-uniform otherwise. i ◮ A homomorphism Γ − → G is a lattice embedding if i (Γ) < G is a lattice and | Ker ( i ) | < ∞ . 2/11

  6. Lattice Envelopes Definition ◮ A subgroup Γ < G is a lattice in a lcsc group G if Γ is discrete and Haar ( G / Γ) < ∞ . Equivalently, Γ has a Borel fundamental domain F ⊂ G with m G ( F ) < ∞ . ◮ A lattice Γ < G is uniform if G / Γ is compact, non-uniform otherwise. i ◮ A homomorphism Γ − → G is a lattice embedding if i (Γ) < G is a lattice and | Ker ( i ) | < ∞ . Problem i Given Γ , describe all lattice envelopes: groups G with a lattice embedding Γ − → G. 2/11

  7. Basic Examples Examples Classical lattices in s-s real Lie groups: π 1 (Σ g ) < PSL 2 ( R ), 3/11

  8. Basic Examples Examples Classical lattices in s-s real Lie groups: π 1 (Σ g ) < PSL 2 ( R ), PSL n ( Z ) < PSL n ( R ) 3/11

  9. Basic Examples Examples Classical lattices in s-s real Lie groups: π 1 (Σ g ) < PSL 2 ( R ), PSL n ( Z ) < PSL n ( R ) S -arithmetic SL n ( Z [ 1 p ]) < SL n ( R ) × SL n ( Q p ) 3/11

  10. Basic Examples Examples Classical lattices in s-s real Lie groups: π 1 (Σ g ) < PSL 2 ( R ), PSL n ( Z ) < PSL n ( R ) S -arithmetic SL n ( Z [ 1 p ]) < SL n ( R ) × SL n ( Q p ) Combinatorial π 1 ( X ) < Aut(˜ X ), X fin simpl cpx, e.g., F n < Aut( T 2 n ) 3/11

  11. Basic Examples Examples Classical lattices in s-s real Lie groups: π 1 (Σ g ) < PSL 2 ( R ), PSL n ( Z ) < PSL n ( R ) S -arithmetic SL n ( Z [ 1 p ]) < SL n ( R ) × SL n ( Q p ) Combinatorial π 1 ( X ) < Aut(˜ X ), X fin simpl cpx, e.g., F n < Aut( T 2 n ) Id Trivial lattice Γ − → Γ 3/11

  12. Basic Examples Examples Classical lattices in s-s real Lie groups: π 1 (Σ g ) < PSL 2 ( R ), PSL n ( Z ) < PSL n ( R ) S -arithmetic SL n ( Z [ 1 p ]) < SL n ( R ) × SL n ( Q p ) Combinatorial π 1 ( X ) < Aut(˜ X ), X fin simpl cpx, e.g., F n < Aut( T 2 n ) Id Trivial lattice Γ − → Γ Constructions i Let Γ − → G be a lattice embedding. 3/11

  13. Basic Examples Examples Classical lattices in s-s real Lie groups: π 1 (Σ g ) < PSL 2 ( R ), PSL n ( Z ) < PSL n ( R ) S -arithmetic SL n ( Z [ 1 p ]) < SL n ( R ) × SL n ( Q p ) Combinatorial π 1 ( X ) < Aut(˜ X ), X fin simpl cpx, e.g., F n < Aut( T 2 n ) Id Trivial lattice Γ − → Γ Constructions i Let Γ − → G be a lattice embedding. Then → G ′ is a lattice imbedding for Γ ′ = Γ ∩ i − 1 ( G ′ ) i ◮ If [ G : G ′ ] < ∞ , then Γ ′ − 3/11

  14. Basic Examples Examples Classical lattices in s-s real Lie groups: π 1 (Σ g ) < PSL 2 ( R ), PSL n ( Z ) < PSL n ( R ) S -arithmetic SL n ( Z [ 1 p ]) < SL n ( R ) × SL n ( Q p ) Combinatorial π 1 ( X ) < Aut(˜ X ), X fin simpl cpx, e.g., F n < Aut( T 2 n ) Id Trivial lattice Γ − → Γ Constructions i Let Γ − → G be a lattice embedding. Then → G ′ is a lattice imbedding for Γ ′ = Γ ∩ i − 1 ( G ′ ) i ◮ If [ G : G ′ ] < ∞ , then Γ ′ − i ◮ If K ⊳ G is compact, then Γ − → G − → G / K is a lattice imbedding 3/11

  15. Basic Examples Examples Classical lattices in s-s real Lie groups: π 1 (Σ g ) < PSL 2 ( R ), PSL n ( Z ) < PSL n ( R ) S -arithmetic SL n ( Z [ 1 p ]) < SL n ( R ) × SL n ( Q p ) Combinatorial π 1 ( X ) < Aut(˜ X ), X fin simpl cpx, e.g., F n < Aut( T 2 n ) Id Trivial lattice Γ − → Γ Constructions i Let Γ − → G be a lattice embedding. Then → G ′ is a lattice imbedding for Γ ′ = Γ ∩ i − 1 ( G ′ ) i ◮ If [ G : G ′ ] < ∞ , then Γ ′ − i ◮ If K ⊳ G is compact, then Γ − → G − → G / K is a lattice imbedding i ◮ If i (Γ) < H < G a closed subgroup, then Γ − → H is a lattice imbedding 3/11

  16. Basic Examples Examples Classical lattices in s-s real Lie groups: π 1 (Σ g ) < PSL 2 ( R ), PSL n ( Z ) < PSL n ( R ) S -arithmetic SL n ( Z [ 1 p ]) < SL n ( R ) × SL n ( Q p ) Combinatorial π 1 ( X ) < Aut(˜ X ), X fin simpl cpx, e.g., F n < Aut( T 2 n ) Id Trivial lattice Γ − → Γ Constructions i Let Γ − → G be a lattice embedding. Then → G ′ is a lattice imbedding for Γ ′ = Γ ∩ i − 1 ( G ′ ) i ◮ If [ G : G ′ ] < ∞ , then Γ ′ − i ◮ If K ⊳ G is compact, then Γ − → G − → G / K is a lattice imbedding i ◮ If i (Γ) < H < G a closed subgroup, then Γ − → H is a lattice imbedding ◮ If Λ < H is a lattice imbedding, then Γ × Λ < G × H is a lattice imbedding. 3/11

  17. The case of Free groups Example Some lattice embeddings of Γ = F n , 1 < n < ∞ : 4/11

  18. The case of Free groups Example Some lattice embeddings of Γ = F n , 1 < n < ∞ : Γ < PSL 2 ( R ) (non-uniform) 1 Γ < PSL 2 ( Q p ) (uniform) 2 Γ < Aut( T 2 n ) (uniform). 3 4/11

  19. The case of Free groups Example Some lattice embeddings of Γ = F n , 1 < n < ∞ : Γ < PSL 2 ( R ) (non-uniform) 1 Γ < PSL 2 ( Q p ) (uniform) 2 Γ < Aut( T 2 n ) (uniform). 3 Theorem Let F n − → G be a lattice embedding (uniform or non-uniform). Then ◮ either K − → G − → PSL 2 ( R ) or PGL 2 ( R ) ◮ or K − → G − → H where H < Aut( T ) cocompact action on a bdd deg tree according to whether F n < G is non-uniform or uniform lattice imbedding. 4/11

  20. The case of Free groups Example Some lattice embeddings of Γ = F n , 1 < n < ∞ : Γ < PSL 2 ( R ) (non-uniform) 1 Γ < PSL 2 ( Q p ) (uniform) 2 Γ < Aut( T 2 n ) (uniform). 3 Theorem Let F n − → G be a lattice embedding (uniform or non-uniform). Then ◮ either K − → G − → PSL 2 ( R ) or PGL 2 ( R ) ◮ or K − → G − → H where H < Aut( T ) cocompact action on a bdd deg tree according to whether F n < G is non-uniform or uniform lattice imbedding. The uniform case uses a result of Mosher - Sageev - Whyte. 4/11

  21. The case of classical lattices Theorem (Rigidity of Classical lattices, extends [F. 2001] ) Let F n �≃ Γ < H be (irred.) lattice in a conn, center free, (semi)-simple real Lie group H w/o compact factors. Let Γ − → G be a lattice imbedding. 5/11

  22. The case of classical lattices Theorem (Rigidity of Classical lattices, extends [F. 2001] ) Let F n �≃ Γ < H be (irred.) lattice in a conn, center free, (semi)-simple real Lie group H w/o compact factors. Let Γ − → G be a lattice imbedding. Then ◮ either, up to fin ind and compact kernel G is H, or ◮ or up to fin ind and compact kernel G is Γ . 5/11

  23. The case of classical lattices Theorem (Rigidity of Classical lattices, extends [F. 2001] ) Let F n �≃ Γ < H be (irred.) lattice in a conn, center free, (semi)-simple real Lie group H w/o compact factors. Let Γ − → G be a lattice imbedding. Then ◮ either, up to fin ind and compact kernel G is H, or ◮ or up to fin ind and compact kernel G is Γ . Example Γ = PSL 2 ( Z [ 1 p ]) < G = PSL 2 ( R ) × H where PSL 2 ( Q p ) < H < Aut( T p +1 ). 5/11

  24. The case of classical lattices Theorem (Rigidity of Classical lattices, extends [F. 2001] ) Let F n �≃ Γ < H be (irred.) lattice in a conn, center free, (semi)-simple real Lie group H w/o compact factors. Let Γ − → G be a lattice imbedding. Then ◮ either, up to fin ind and compact kernel G is H, or ◮ or up to fin ind and compact kernel G is Γ . Example Γ = PSL 2 ( Z [ 1 p ]) < G = PSL 2 ( R ) × H where PSL 2 ( Q p ) < H < Aut( T p +1 ). Theorem (Rigidity of S -arithmetic lattices) Let Γ < H = H ( ∞ ) × H ( fin ) be an S-arithmetic lattice H ( k ( S )) < � ν ∈ S H ( k ν ) . Let Γ → G be a lattice imbedding. Then up to fin ind and compact kernel ◮ either G is H ( ∞ ) × H ( fin ) , ∗ , where H ( fin ) < H ( fin ) , ∗ < Aut( X B − T ) ◮ or G is Γ . 5/11

  25. The case of convergence groups Convergence groups Group Γ is a convergence group if there is a minimal action Γ → Homeo( M ) with infinite compact M so that the action on M 3 \ ∆ is proper. 6/11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend