large scale simulation of cloud cavitation collapse
play

Large Scale Simulation of Cloud Cavitation Collapse Ursula - PowerPoint PPT Presentation

4th Cavitation Workshop Crete, 30 May - 1 June 2016 Large Scale Simulation of Cloud Cavitation Collapse Ursula Rasthofer with: Fabian Wermelinger, Jonas Sukys, Diego Rossinelli, Panagiotis Hadjidoukas, Petros Koumoutsakos CSE lab


  1. 4th Cavitation Workshop Crete, 30 May - 1 June 2016 Large Scale Simulation of Cloud Cavitation Collapse Ursula Rasthofer with: Fabian Wermelinger, Jonas Sukys, Diego Rossinelli, Panagiotis Hadjidoukas, Petros Koumoutsakos CSE lab Computational Science & Engineering Laboratory http://www.cse-lab.ethz.ch

  2. Outline 1. Motivation 2. Cubism-MPCF 3. Modeling Approach and Governing Equations 4. Simulations 5. Conclusions 2

  3. Outline 1. Motivation 2. Cubism-MPCF 3. Modeling Approach and Governing Equations 4. Simulations 5. Conclusions 3

  4. Power of Cavitation extracted from: Bazan-Peregrino et al., Cavitation-enhanced http://www.forddoctorsdts.com delivery of a replicating oncolytic adenovirus to tumors using https://de.wikipedia.org/wiki/Kavitation focused ultrasound , Journal of Controlled Release Volume 169, Issues 1–2, 2013, 40-47 Engineering Extracorporeal_shock_wave_lithotripsy http://www.forddoctorsdts.com Biomedical https://en.wikipedia.org/wiki/ Applications Nature herve.cochard.free.fr extracted from: Brennen, Hydrodynamics of pumps, Oxford University Press, 1994 https://de.wikipedia.org/wiki/ Knallkrebse 4

  5. Cloud Cavitation Collapse www.amc.edu.au • Thousands of bubbles • Cloud dynamics dominated by bubble interactions ‣ Experiments ‣ Theory - based on Rayleigh-Plesset equation or similar relations esource.alstrbology.com - usually assume spherical bubbles ‣ Simulations - Lagrangian approaches for bubbles - fully resolved bubbles usually restricted to small www.jotformeu.com clouds (~100 bubbles) 5

  6. 120 Collapsing Bubbles (TUM) Bubbles = 120 Np = 1.2E+08 Tw = 29.9 CSElab : 15E+03 Bubbles , Np = 1.3E+13 , Tw = 1.8 6

  7. Outline 1. Motivation 2. Cubism-MPCF 3. Modeling Approach and Governing Equations 4. Simulations 5. Conclusions 7

  8. Cubism-MPCF • compressible multicomponent flow solver [Rossinelli et al. 2013] • 3D structured-grid finite volume solver - m s b i u C MPCF b • a wavelet-based compression of simulation data E l S C 8

  9. Finite Volume Method • conservation-law form U i ∂ U ( x , t ) + r · F ( U ) = 0 U i+1 ∂ t F i-1/2 F i+1/2 U i-1 U = ( α 1 ρ 1 , α 2 ρ 2 , ρ u, ρ v, ρ w, E ) T h c i-1 c i c i+1 • cell-average values x i-1/2 x i+1/2 U ijk ( t ) = 1 Z U ( x , t )d Ω c h 3 Ω c • semi-discrete form d U ijk ( t ) + 1 ⇣ ⌘ 2 + F y 2 − F y F x 2 − F x 2 + F z 2 − F z = 0 i + 1 i − 1 k + 1 k − 1 j + 1 j − 1 d t h 2 9

  10. Godunov-Type Finite Volume Method • reformulation of gas-volume- α 2 ρ 1 c 2 ∂α 2 1 ∂ t + r · ( α 2 u ) = r · u fraction equation α 1 ρ 2 c 2 2 + α 2 ρ 1 c 2 1 [Johnsen & Colonius 2006] W R U i • high-order reconstruction of U i+1 F i-1/2 F i+1/2 W L face values of primitive U i-1 h variables using WENO3/5 c i-1 c i c i+1 [Liu et al. 1994, Jiang & Shu 1998] x i-1/2 x i+1/2 • approximate HLLC Riemann y solver for flux reconstruction U 1 c [Toro et al. 1994] r U L* U 2 s • low-storage 3rd-order Runge- U R* U - U + Kutta scheme for time x discretization [Gottlieb e t al. 2001] 10

  11. Software Layout computational domain www.cscs.ch subdomain www.alcf.anl.gov Cluster Node Core block grid cell • cluster (MPI) • node (OpenMP) • core (SIMD): WENO, HLLC 11

  12. Performance and Comparison TIME TO SOLUTION (no I/O) PFLOPS (% Peak) �������������������������� T w = 1.8 14.4 PFLOPS (72%) T w = 29.7 (TUM) 0.1 - 3% (TUM) T w = 16.3 - 39.0 (Stanford) 1.3 - 6.4% (Stanford) I/O COMPRESSION SIZE 10-100x 1.3 E13 - 15K bubbles - (TUM) 1.2 E08 - 0.15K bubbles (TUM) - (Stanford) 0.4 E13 - turbulence (Stanford) 12

  13. Outline 1. Motivation 2. Cubism-MPCF 3. Modeling Approach and Governing Equations 4. Simulations 5. Conclusions 13

  14. Numerical Challenges • O(100) to O(10 4 ) bubbles • broad range of length and time scales • complex interface evolution due to bubble-bubble interactions • high density ratios O(10 3 ) • surface-tension effects • coupling of gas and nearly- incompressible liquid • secondary cavitation 14

  15. Modeling Strategies single-fluid two-fluid mixture models models approches Lagrangian/Eulerian e.g., thermodynamic e.g., diffuse interface methods, e.g., based equilibrium cavitation methods on level-set description model computational efficiency complexity/fidelity 15

  16. Di ff use Interface Method • based on two-fluid model with 7 equations [Baer & Nunziato 1986, Saurel & Abgrall 1999] - mass, momentum, energy conservation for each phase - additional topological equation for interface • reduced to 5-equation model by asymptotic analysis in limit of zero relaxation time (velocity and pressure equilibrium at interfaces) [Kapila et al. 2001, Allaire et al. 2002, Murrone & Guillard 2005, ….] 16

  17. Governing Equations ∂α 1 ρ 1 + r · ( α 1 ρ 1 u ) = 0 ∂ t ∂α 2 ρ 2 + r · ( α 2 ρ 2 u ) = 0 ∂ t ∂ ( ρ u ) + r · ( ρ u ⌦ u + p I ) = 0 ∂ t ∂ E ∂ t + r · (( E + p ) u ) = 0 O(h) ∂α 2 ∂ t + u · r α 2 = K r · u where K = α 1 α 2 ( ρ 1 c 2 1 − ρ 2 c 2 2 ) α 1 ρ 2 c 2 2 + α 2 ρ 1 c 2 1 and [Kapila et al. 2001, Murrone & Guillard 2005, Saurel et al. α 1 + α 2 = 1 2009, …] 17

  18. Thermodynamic Closure • stiffened equation-of- p k = ( γ k − 1) ρ k e k − γ k p c ,k state (EoS) for pure fluids [Menikoff & Plohr 1989, …] ρ = α 1 ρ 1 + α 2 ρ 2 • mixture relations ρ e = α 1 ρ 1 e 1 + α 2 ρ 2 e 2 • pressure equilibrium p=p k • mixture speed of sound 1 ρ c 2 = α 1 + α 2 ρ 1 c 2 ρ 2 c 2 1 2 [Wood 1930] 18

  19. Further Variants • source term of gas-volume-fraction equation neglected • mixture mass conservation • equation-of-state must be valid in all flow regions (pure fluids and artificial mixing zone) ∂ρ [Shyue 1998, Johnsen & Colonius 2006,…] ∂ t + r · ( ρ u ) = 0 ∂ ( ρ u ) + r · ( ρ u ⌦ u + p I ) = 0 ∂ t ∂ E ∂ t + r · (( E + p ) u ) = 0 ∂φ ∂ t + u · r φ = 0 where φ 2 { Γ , Π } and α 1 ρ 1 c 2 γ 1 − 1 + α 2 ρ 2 c 2 1 2 1 ρ c 2 = γ 2 − 1 γ p c Γ = and Π = γ − 1 . α 1 α 2 γ − 1 γ 1 − 1 + γ 2 − 1 19

  20. Model Properties ���� ������� ��� ���� ��� • non-monotonic speed of sound with ���� ���� ���� respect to gas volume fraction ���� � ��� ��� ��� ��� � � ��� ��� ��� ��� � � � • right-hand-side term of gas volume α 1 α 2 ( ρ 1 c 2 1 � ρ 2 c 2 2 ) r · u fraction equation α 1 ρ 2 c 2 2 + α 2 ρ 1 c 2 1 - increase of gas volume fraction across rarefaction waves - decrease of gas volume fraction across compression waves 20

  21. Key Issue I: Negative Pressure • High Pressure Ratios ��� � • Large Clouds ��� ��� - amplification of waves due to ��� � ��� �� ���� ��� many bubble layers � ���� ‣ high peak pressures in cloud ���� ���� resulting in strong rarefaction in ���� � � � � � �� �� �� �� � ���� cloud interior 21

  22. Key Issue I: Negative Pressure p k = ( γ k − 1) ρ k e k − γ k p c ,k • effects of choice for EoS for pure fluids negative pressure in liquid due to stiffened EoS - - tensile stresses appearing as negative pressure regions due to strong rarefaction waves - indications of secondary cavitation? - other? Note: Negative pressures also observed by other groups (private communication) 22

  23. Negative Pressure - Remedies? • right-hand-side term of gas volume fraction equation - dynamic creation of interfaces by mechanical relaxation if small portion of gas available [Saurel et al. 2008] ∂ t + u · r α 2 = α 1 α 2 ( ρ 1 c 2 1 � ρ 2 c 2 2 ) ∂α 2 r · u α 1 ρ 2 c 2 2 + α 2 ρ 1 c 2 1 • integration of mass transfer directly enabled by separate continuity equation for each fluid [Saurel et al. 2008] 23

  24. Cavitation Tube - Setup • two diverging rarefaction waves in water with small amount of air volume fraction content stationary contact wave t rarefaction wave rarefaction wave W L W R x • initial conditions (1150 . 0 kg / m 3 , − 100 . 0 m / s , 1 . 0 · 10 5 Pa , 1 . 0 · 10 − 2 ) ( for 0 m ≤ x ≤ 0 . 5 m ( ρ , u, p, α 2 ) 0 = (1150 . 0 kg / m 3 , 100 . 0 m / s , 1 . 0 · 10 5 Pa , 1 . 0 · 10 − 2 ) for 0 . 5 m < x ≤ 1 . 0 m 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend