large scale simulation of cloud cavitation collapse
play

Large Scale Simulation of Cloud Cavitation Collapse Ursula - PowerPoint PPT Presentation

ICCS 2017 Zurich, June 11 - 14, 2017 Large Scale Simulation of Cloud Cavitation Collapse Ursula Rasthofer with: Fabian Wermelinger, Panagiotis Hadjidoukas, Petros Koumoutsakos CSE lab Computational Science & Engineering Laboratory


  1. ICCS 2017 Zurich, June 11 - 14, 2017 Large Scale Simulation of Cloud Cavitation Collapse Ursula Rasthofer with: Fabian Wermelinger, Panagiotis Hadjidoukas, Petros Koumoutsakos CSE lab Computational Science & Engineering Laboratory http://www.cse-lab.ethz.ch

  2. Power of Cavitation extracted from: Bazan-Peregrino et al. , Cavitation-enhanced http://www.forddoctorsdts.com delivery of a replicating oncolytic adenovirus to tumors using https://de.wikipedia.org/wiki/Kavitation focused ultrasound , Journal of Controlled Release Volume 169, Issues 1–2, 2013, 40-47 engineering Extracorporeal_shock_wave_lithotripsy http://www.forddoctorsdts.com biomedical https://en.wikipedia.org/wiki/ applications nature herve.cochard.free.fr extracted from: Brennen, Hydrodynamics of pumps, Oxford University Press, 1994 https://de.wikipedia.org/wiki/ Knallkrebse 2

  3. Cloud Cavitation Collapse www.amc.edu.au • thousands of bubbles • cloud dynamics dominated by bubble-bubble interactions ‣ experiments - challenging high frequencies and microscopic length scales - risk of damage ‣ theory esource.alstrbology.com based on Rayleigh-Plesset-like equations - spherical bubbles usually assumed - ‣ simulations - Lagrangian approaches for bubbles fully resolved bubble clouds usually - restricted to small clouds www.jotformeu.com 3

  4. Outline • Computational Approach • Simulations • Conclusions 4

  5. Outline • Computational Approach • Simulations • Conclusions 5

  6. Modeling Strategies single-fluid two-fluid mixture models models approches Lagrangian methods as e.g., thermodynamic well as Eulerian e.g., diffuse interface equilibrium cavitation methods, e.g., based methods model on level-set description computational efficiency complexity/fidelity 6

  7. Di ff use Interface Method ∂α 1 ρ 1 + r · ( α 1 ρ 1 u ) = 0 ∂ t ∂α 2 ρ 2 FLUID 1 + r · ( α 2 ρ 2 u ) = 0 ∂ t ∂ ( ρ u ) + r · ( ρ u ⌦ u + p I ) = 0 ∂ t ∂ E I N ∂ t + r · (( E + p ) u ) = 0 T E R ∂α 2 F A ∂ t + u · r α 2 = K r · u C E O(h) where K = α 1 α 2 ( ρ 1 c 2 1 − ρ 2 c 2 2 ) FLUID 2 α 1 ρ 2 c 2 2 + α 2 ρ 1 c 2 1 and [Kapila et al. 2001, Murrone & Guillard 2005, Saurel et al. α 1 + α 2 = 1 2009, Tiwari et al. 2013, …] 7

  8. Godunov-Type Finite Volume Method • reformulation of gas-volume- α 2 ρ 1 c 2 ∂α 2 1 ∂ t + r · ( α 2 u ) = r · u fraction equation α 1 ρ 2 c 2 2 + α 2 ρ 1 c 2 1 [Johnsen & Colonius 2006] W R U i • high-order reconstruction of U i+1 F i-1/2 F i+1/2 W L face values of primitive U i-1 h variables using WENO3/5 c i-1 c i c i+1 [Liu et al. 1994, Jiang & Shu 1998] x i-1/2 x i+1/2 • approximate HLLC Riemann y solver for flux reconstruction U 1 c [Toro et al. 1994] r U L* U 2 s • low-storage 3rd-order Runge- U R* U - U + Kutta scheme for time x discretization [Gottlieb e t al. 2001] 8

  9. �������������������������� Cubism-MPCF • compressible multicomponent flow solver tailored to HPC systems [Rossinelli et al. 2013, P . E. Hadjidoukas et al. 2015] • 3D Cartesian-grid finite volume solver • wavelet-based compression of simulation data TIME TO SOLUTION (no I/O) PFLOPS (% Peak) T w = 1.8 14.4 PFLOPS (72%) T w = 29.7 (TUM) 0.1 - 3% (TUM) T w = 16.3 - 39.0 (Stanford) 1.3 - 6.4% (Stanford) I/O COMPRESSION SIZE 10-100X 1.3 E13 - 15K bubbles - 1.2 E08 - 0.15K bubbles (TUM) - 0.4 E13 - Turbulence (Stanford) 9

  10. Cubism-MPCF: Software Layout www.cscs.ch www.alcf.anl.gov computational domain www.fz-juelich.de Cluster Node subdomain Core block • cluster (MPI) grid cell • node (OpenMP) • core (SIMD): WENO, HLLC 10

  11. Node and Cluster Layer • OpenMP parallelization dynamic work scheduling - 1 thread exclusively processes 1 block - node i-1 node i node i+1 • MPI parallelization non-blocking P2P communication for ghost blocks - communication time ~ O(time for processing 1-2 blocks) - 11

  12. Core Layer • block-based memory layout increases spatial locality - • instruction and data level parallelism explicit vectorization - code fusion techniques - • temporal locality ring buffers for active data slices, e.g., in - WENO, HLLC 12

  13. Outline • Computational Approach • Simulations • Conclusions 13

  14. Cloud Setup R B R C y d G r B R B x z • gas-volume fraction • cloud generation n B 1 X R 3 locations: random - α = B ,i R 3 C i =1 - radii: constant or random • cloud interaction parameter ✓ R eq • collapse driven by increase ◆ 2 β = α of ambient pressure R avg 14

  15. 50K Bubbles, 64 Billion Cells 25K time steps, 72h x 32K cores 15

  16. Micro-Jet Formation • due to pressure gradient along interface • directed toward cloud center 12 8 4 0 y − 4 − 8 − 12 − 12 − 8 − 4 0 4 8 12 x 16

  17. Bubble Reconstruction Γ int ( t ) = { x ∈ Ω | α 2 ( x , t ) = 0 . 5 } Ψ = 1 . 00 φ = 1 . 00 α 2 > 0 . 5 α 2 < 0 . 5 ⌘ 2 Ψ = 0 . 96 ⇣ 3 1 2 V B 6 π φ = 0 . 98 sphericity Ψ = S B φ = V B porosity V h B Ψ = 0 . 60 φ = 0 . 67 17

  18. Sphericity and Porosity 1 1 φ Ψ increasing cloud interaction parameter 0 . 99 0 . 99 1 1 0 . 98 0 . 99 φ Ψ 0 . 96 0 . 98 1 1 0 . 80 0 . 90 φ Ψ 0 . 60 0 . 80 0 0 . 2 0 . 4 0 . 6 0 . 8 1 0 0 . 2 0 . 4 0 . 6 0 . 8 1 t/t C t/t C 18

  19. Keller-Miksis Equation for Clouds • spherical bubble collapses assumed • weakly compressible liquid flow • extended form including bubble translation ! ! ! ˙ ˙ ˙ 3 B i = 1 d t ( p B i − p 1 ) + 1 d R B i R B i R B i ( p B i − p 1 ) + R B i R B i ¨ ˙ R 2 x 2 1 − R B i + 1 + 4 ˙ 2 − B i 2 c 1 c 1 c 1 ρ 1 c 1 ρ 1 radius n B " R 2 1 ⇣ ⌘ ⇣ ⌘ B j B j ¨ R B j + 2 R B j ˙ x B j + ˙ x B i + 5 ˙ X R 2 R 2 � � + R B j ¨ R B j ˙ R B j ˙ x B i − x B j x B j − · B j 2 d 3 d ij ij j =1; j 6 = i !# R 3 � ˙ � ˙ � ˙ + 3 B j � � � �� � � � � ˙ x B i + 2 ˙ x B i + 2 ˙ x B j · x B j x B j · x B j − x B i x B i − x B j x B j − · 4 d 3 d 2 ij ij N " 1 1 � ⇣ ⌘ x B i + ˙ X B j ¨ R B j + 2 R B i R B j ˙ B j + ˙ R B i ˙ R B i R 2 R 2 R B j R 2 � 3 R B i ¨ R B i ˙ x B i = x B i − x B j B j d 3 ij j =1; j 6 = i position R 2 ⇣ ⇣ ⌘ ⌘ B j R B i R B j + 5 R B i ˙ ˙ R B i R B j ¨ x B j + ˙ R B j x B j − 2 d 3 ij ◆!# 3 R 2 ✓ ⇣ ⌘ B j R B i R B j + 5 R B i ˙ ˙ � � � � + R B i R B j ¨ x B j + ˙ R B j x B i − x B j x B i − x B j x B j · 2 d 5 ij ◆ 3 γ 2 ✓ R B i (0) p B i = p B i (0) R B i 19 [Keller & Miksis 1997, Mettin et al. 1997, Doinikov 2004]

  20. Bubble Radius increasing cloud interaction parameter 0 . 8 0 . 8 0 . 8 A A A 0 . 7 0 . 7 0 . 7 R B [mm] R B [mm] R B [mm] C C C 0 . 6 0 . 6 0 . 6 B B B 0 . 5 0 . 5 0 . 5 0 10 20 30 40 50 0 20 40 60 0 20 40 60 80 t [ µ s] t [ µ s] t [ µ s] • A: center-most solid: 3D simulations • • B: closest to R C /2 dashed: without bubble translation (KM) • • C: outer-most dash-dot-dot: with bubble translation (DK) • • increasing deviations with increasing cloud interaction parameter, in particular, if bubble translation is neglected 20

  21. Large-Scale Cloud • 12500 air bubbles in water • p C = 1 bar • p ∞ = 10 bar • cloud radius: 45 mm • average bubble radius: 0.69 mm • gas-volume faction: 5% • cloud interaction parameter: 28 21

  22. Cloud Collapse p S V 2 p S,max V 2 (0) 1 0 . 8 0 . 6 0 . 4 0 . 2 0 0 100 200 300 400 t [ µ s] 22

  23. Collapse Wave simulation Morch model 0 . 6 u W [km / s] 0 . 4 0 . 2 0 0 50 100 150 200 250 300 t [ µ s] • Morch model: collapse wave in cloud of vapor bubbles R 2 = − p ∞ − p vapor R !! 2 (1 − γ )(1 − α C )) ! R + ( 3 2 − 1 [Morch 1989] ρ liquid α C 23

  24. Erosive Potential • pits: plastic deformations in simulation fit form of small indents probability density function of coverage rate cumulative impact rate • due to impulsive load 10 5 cm 2 s ] generated by bubble collapses 
 1 10 4 cpr [ shell 1 shell 2 10 3 shell 3 0 1 2 3 4 d P [mm] shell 1 shell 2 shell 3 · 10 4 8 1 6 cm s ] 3 pcr [ 1 2 4 2 0 0 1 2 3 4 d P [mm] 24

  25. Outline • Computational Approach • Simulations • Conclusions 25

  26. Summary & Outlook • diffuse interface method and Cubism-MPCF ✓ important to account for gas expansion and compression in interface ✓ compressible multicomponent flow solver capable of processing up to 7x10 11 cells per second • HPC for collapsing clouds with up to 50K bubbles ✓ comparison with bubble-particle approaches ✓ insights into induced pressure and velocity fields, wave dynamics, bubble shape evolution as well as erosive potential ➡ integration of mass transfer and application to turbulent cavitating flow 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend