koopman operators and dynamic mode decomposition
play

Koopman Operators and Dynamic Mode Decomposition Shubhendu Trivedi - PowerPoint PPT Presentation

Koopman Operators and Dynamic Mode Decomposition Shubhendu Trivedi The University of Chicago Toyota Technological Institute Chicago, IL - 60637 Shubhendu Trivedi (TTI-C) Koopman Operators 1 / 50 On White Board (fill later) Intro to


  1. Extended Koopman Operator Can extend the Koopman operator to this larger space Denote F = ( f 1 , . . . , f K ) T ∈ F K Then U K : F K → F K   [ Uf 1 ]( p ) . . [ U K F ]( p ) :=   .   [ Uf K ]( p ) K � Then U K = U 1 F K is the space of C K -valued observables on the state space M More generally: F : M → V where V is a vector space Shubhendu Trivedi (TTI-C) Koopman Operators 8 / 50

  2. Koopman Operators in Continuous Time D.S. Consider the continuous time dynamical system p = T ( p ) ˙ Shubhendu Trivedi (TTI-C) Koopman Operators 9 / 50

  3. Example: Cyclic Group Shubhendu Trivedi (TTI-C) Koopman Operators 10 / 50

  4. Setup Reminder: Group that can be obtained by a single generator Shubhendu Trivedi (TTI-C) Koopman Operators 11 / 50

  5. Setup Reminder: Group that can be obtained by a single generator Let M = { e, a, a 2 } be a cyclic group of order 3 Shubhendu Trivedi (TTI-C) Koopman Operators 11 / 50

  6. Setup Reminder: Group that can be obtained by a single generator Let M = { e, a, a 2 } be a cyclic group of order 3 Define T : M → M as T(p) = a · p Shubhendu Trivedi (TTI-C) Koopman Operators 11 / 50

  7. Setup Reminder: Group that can be obtained by a single generator Let M = { e, a, a 2 } be a cyclic group of order 3 Define T : M → M as T(p) = a · p Entire state space is a periodic orbit with period 3 Shubhendu Trivedi (TTI-C) Koopman Operators 11 / 50

  8. Setup Reminder: Group that can be obtained by a single generator Let M = { e, a, a 2 } be a cyclic group of order 3 Define T : M → M as T(p) = a · p Entire state space is a periodic orbit with period 3 Let F be C -valued functions on M Shubhendu Trivedi (TTI-C) Koopman Operators 11 / 50

  9. Setup Reminder: Group that can be obtained by a single generator Let M = { e, a, a 2 } be a cyclic group of order 3 Define T : M → M as T(p) = a · p Entire state space is a periodic orbit with period 3 Let F be C -valued functions on M Space of observables is C 3 Shubhendu Trivedi (TTI-C) Koopman Operators 11 / 50

  10. Setup Let f 1 , f 2 , f 3 be indicator functions on e, a, a 2 : � 1 if p = e f 1 ( p ) = 0 if p � = e � 1 if p = a f 2 ( p ) = 0 if p � = a � if p = a 2 1 f 3 ( p ) = if p � = a 2 0 Shubhendu Trivedi (TTI-C) Koopman Operators 12 / 50

  11. Setup Let f 1 , f 2 , f 3 be indicator functions on e, a, a 2 : � 1 if p = e f 1 ( p ) = 0 if p � = e � 1 if p = a f 2 ( p ) = 0 if p � = a � if p = a 2 1 f 3 ( p ) = if p � = a 2 0 Form a basis for F Shubhendu Trivedi (TTI-C) Koopman Operators 12 / 50

  12. Example: Cyclic Group Action of the Koopman operator on this basis: [ Uf 1 ]( p ) = f 1 ( a · p ) = f 3 ( p ) [ Uf 2 ]( p ) = f 2 ( a · p ) = f 1 ( p ) [ Uf 3 ]( p ) = f 3 ( a · p ) = f 2 ( p ) Shubhendu Trivedi (TTI-C) Koopman Operators 13 / 50

  13. Example: Cyclic Group Action of the Koopman operator on this basis: [ Uf 1 ]( p ) = f 1 ( a · p ) = f 3 ( p ) [ Uf 2 ]( p ) = f 2 ( a · p ) = f 1 ( p ) [ Uf 3 ]( p ) = f 3 ( a · p ) = f 2 ( p ) Consider arbitrary observable f ∈ F i.e. f = c 1 f 1 + c 2 f 2 + c 3 f 3 Shubhendu Trivedi (TTI-C) Koopman Operators 13 / 50

  14. Example: Cyclic Group Action of the Koopman operator on this basis: [ Uf 1 ]( p ) = f 1 ( a · p ) = f 3 ( p ) [ Uf 2 ]( p ) = f 2 ( a · p ) = f 1 ( p ) [ Uf 3 ]( p ) = f 3 ( a · p ) = f 2 ( p ) Consider arbitrary observable f ∈ F i.e. f = c 1 f 1 + c 2 f 2 + c 3 f 3 Consider the action of the Koopman operator on f : Uf = U ( c 1 f 1 + c 2 f 2 + c 3 f 3 ) = c 1 f 3 + c 2 f 1 + c 3 f 2 Shubhendu Trivedi (TTI-C) Koopman Operators 13 / 50

  15. Example: Cyclic Group Matrix representation of the Koopman operator U in the { f 1 , f 2 , f 3 } basis:  c 1   0 1 0   c 1   = U c 2 0 0 1 c 2      c 3 1 0 0 c 3 Shubhendu Trivedi (TTI-C) Koopman Operators 14 / 50

  16. Example: Linear Diagonalizable Systems Shubhendu Trivedi (TTI-C) Koopman Operators 15 / 50

  17. Setup Let M = R d , and define T : M → M as : ( T ( x )) i = µ i x i Shubhendu Trivedi (TTI-C) Koopman Operators 16 / 50

  18. Setup Let M = R d , and define T : M → M as : ( T ( x )) i = µ i x i x = ( x 1 , . . . , x d ) T ∈ M and µ i ∈ R Shubhendu Trivedi (TTI-C) Koopman Operators 16 / 50

  19. Setup Let M = R d , and define T : M → M as : ( T ( x )) i = µ i x i x = ( x 1 , . . . , x d ) T ∈ M and µ i ∈ R Let F denote space of functions R d → C Shubhendu Trivedi (TTI-C) Koopman Operators 16 / 50

  20. Setup Let M = R d , and define T : M → M as : ( T ( x )) i = µ i x i x = ( x 1 , . . . , x d ) T ∈ M and µ i ∈ R Let F denote space of functions R d → C Let { b 1 . . . , b d } ⊂ M be a basis for M ; define f i ( x ) = � b i , x � Shubhendu Trivedi (TTI-C) Koopman Operators 16 / 50

  21. Example: Linear Diagonalizable Systems The action of the Koopman operator U : F → F on f i is   µ 1 x 1 . � � . [ Uf i ]( x ) = � b i , T ( x ) � = b i, 1 . . . b i,d   .   µ d x d Shubhendu Trivedi (TTI-C) Koopman Operators 17 / 50

  22. Example: Linear Diagonalizable Systems The action of the Koopman operator U : F → F on f i is   µ 1 x 1 . � � . [ Uf i ]( x ) = � b i , T ( x ) � = b i, 1 . . . b i,d   .   µ d x d   µ 1 0 . . . 0   x 1 0 µ 2 . . . 0   . � � . [ Uf i ]( x ) = b i, 1 . . . b i,d  . . .    ... . . . .     . . .   x d 0 0 . . . µ d Shubhendu Trivedi (TTI-C) Koopman Operators 17 / 50

  23. Example: Linear Diagonalizable Systems d Recall F d = � F , define U d as earlier, then for F = ( f 1 , . . . , f d ) T 1 Shubhendu Trivedi (TTI-C) Koopman Operators 18 / 50

  24. Example: Linear Diagonalizable Systems d Recall F d = � F , define U d as earlier, then for F = ( f 1 , . . . , f d ) T 1 Then the action of the extended Koopman operator Shubhendu Trivedi (TTI-C) Koopman Operators 18 / 50

  25. Example: Linear Diagonalizable Systems d Recall F d = � F , define U d as earlier, then for F = ( f 1 , . . . , f d ) T 1 Then the action of the extended Koopman operator   µ 1 0 . . . 0     b 1 , 1 . . . b 1 ,d x 1 0 µ 2 . . . 0 . . . ...   . . . [ U d F ]( x ) =    . . .    . . ... . . . .       . . .   b d, 1 . . . b d,d x d 0 0 . . . µ d Shubhendu Trivedi (TTI-C) Koopman Operators 18 / 50

  26. Example: Linear Diagonalizable Systems d Recall F d = � F , define U d as earlier, then for F = ( f 1 , . . . , f d ) T 1 Then the action of the extended Koopman operator   µ 1 0 . . . 0     b 1 , 1 . . . b 1 ,d x 1 0 µ 2 . . . 0 . . . ...   . . . [ U d F ]( x ) =    . . .    . . ... . . . .       . . .   b d, 1 . . . b d,d x d 0 0 . . . µ d This is the action of the Koopman operator on the particular observable F , not the entire observable space F Shubhendu Trivedi (TTI-C) Koopman Operators 18 / 50

  27. Example: Heat equation with periodic boundary conditions Shubhendu Trivedi (TTI-C) Koopman Operators 19 / 50

  28. Mode Analysis Shubhendu Trivedi (TTI-C) Koopman Operators 20 / 50

  29. Eigenfunctions and Koopman Modes We have put no structure on F so far Shubhendu Trivedi (TTI-C) Koopman Operators 21 / 50

  30. Eigenfunctions and Koopman Modes We have put no structure on F so far When F is a vector space, the Koopman operator is linear Shubhendu Trivedi (TTI-C) Koopman Operators 21 / 50

  31. Eigenfunctions and Koopman Modes We have put no structure on F so far When F is a vector space, the Koopman operator is linear Interest: Study spectral properties of the Koopman Operator to probe into the dynamics of the system Shubhendu Trivedi (TTI-C) Koopman Operators 21 / 50

  32. Eigenfunctions and Koopman Modes We have put no structure on F so far When F is a vector space, the Koopman operator is linear Interest: Study spectral properties of the Koopman Operator to probe into the dynamics of the system Assume: F is a Banach space Shubhendu Trivedi (TTI-C) Koopman Operators 21 / 50

  33. Eigenfunctions and Koopman Modes We have put no structure on F so far When F is a vector space, the Koopman operator is linear Interest: Study spectral properties of the Koopman Operator to probe into the dynamics of the system Assume: F is a Banach space Assume: U is a bounded, continuous operator on F Shubhendu Trivedi (TTI-C) Koopman Operators 21 / 50

  34. Eigenfunctions and Koopman Modes Let { φ 1 , . . . , φ n } be a set of eigenfunctions of U , where n = 1 , 2 , .., ∞ Shubhendu Trivedi (TTI-C) Koopman Operators 22 / 50

  35. Eigenfunctions and Koopman Modes Let { φ 1 , . . . , φ n } be a set of eigenfunctions of U , where n = 1 , 2 , .., ∞ For the discrete case: Shubhendu Trivedi (TTI-C) Koopman Operators 22 / 50

  36. Eigenfunctions and Koopman Modes Let { φ 1 , . . . , φ n } be a set of eigenfunctions of U , where n = 1 , 2 , .., ∞ For the discrete case: [ Uφ i ]( p ) = λ i φ i ( p ) Shubhendu Trivedi (TTI-C) Koopman Operators 22 / 50

  37. Eigenfunctions and Koopman Modes Let { φ 1 , . . . , φ n } be a set of eigenfunctions of U , where n = 1 , 2 , .., ∞ For the discrete case: [ Uφ i ]( p ) = λ i φ i ( p ) For the continuous case: Shubhendu Trivedi (TTI-C) Koopman Operators 22 / 50

  38. Eigenfunctions and Koopman Modes Let { φ 1 , . . . , φ n } be a set of eigenfunctions of U , where n = 1 , 2 , .., ∞ For the discrete case: [ Uφ i ]( p ) = λ i φ i ( p ) For the continuous case: [ U t φ i ]( p ) = e λ i t φ i ( p ) Shubhendu Trivedi (TTI-C) Koopman Operators 22 / 50

  39. Eigenfunctions and Koopman Modes Let { φ 1 , . . . , φ n } be a set of eigenfunctions of U , where n = 1 , 2 , .., ∞ For the discrete case: [ Uφ i ]( p ) = λ i φ i ( p ) For the continuous case: [ U t φ i ]( p ) = e λ i t φ i ( p ) λ ’s are the eigenvalues of the generator U , and { e λ i } of the Koopman semi-group Shubhendu Trivedi (TTI-C) Koopman Operators 22 / 50

  40. Algebraic Structure of Eigenfunctions Assume that F is a subset of all C valued functions on M Shubhendu Trivedi (TTI-C) Koopman Operators 23 / 50

  41. Algebraic Structure of Eigenfunctions Assume that F is a subset of all C valued functions on M Also assume that it forms a vector space that is closed under pointwise products of functions Shubhendu Trivedi (TTI-C) Koopman Operators 23 / 50

  42. Algebraic Structure of Eigenfunctions Assume that F is a subset of all C valued functions on M Also assume that it forms a vector space that is closed under pointwise products of functions = ⇒ set of eigenfunctions forms an abelian semigroup under pointwise products of functions Shubhendu Trivedi (TTI-C) Koopman Operators 23 / 50

  43. Algebraic Structure of Eigenfunctions Assume that F is a subset of all C valued functions on M Also assume that it forms a vector space that is closed under pointwise products of functions = ⇒ set of eigenfunctions forms an abelian semigroup under pointwise products of functions Concretely: If φ 1 , φ 2 ∈ F are eigenfunctions of U with eigenvalues λ 1 and λ 2 , then φ 1 φ 2 is an eigenfunction of U with eignevalue λ 1 λ 2 Shubhendu Trivedi (TTI-C) Koopman Operators 23 / 50

  44. Algebraic Structure of Eigenfunctions If p > 0 and φ is an eigenfunction with eigenvalue λ , then φ p is an eigenfunction with eigenvalue λ p Shubhendu Trivedi (TTI-C) Koopman Operators 24 / 50

  45. Algebraic Structure of Eigenfunctions If p > 0 and φ is an eigenfunction with eigenvalue λ , then φ p is an eigenfunction with eigenvalue λ p If φ is an eigenfunction that vanishes nowhere and r ∈ R , then φ r is an eigenfunction with eigenvalue λ r Shubhendu Trivedi (TTI-C) Koopman Operators 24 / 50

  46. Algebraic Structure of Eigenfunctions If p > 0 and φ is an eigenfunction with eigenvalue λ , then φ p is an eigenfunction with eigenvalue λ p If φ is an eigenfunction that vanishes nowhere and r ∈ R , then φ r is an eigenfunction with eigenvalue λ r Eigenfunctions that vanish nowhere form an Abelian group Shubhendu Trivedi (TTI-C) Koopman Operators 24 / 50

  47. Spectral Equivalence of Topologically Conjugate Systems Proposition Let S : M → M and T : N → N be topologically conjugate; i.e. ∃ a homomorphism h : N → M such that S ◦ h = h ◦ T . If φ is an eigenfunction of U S with eigenvalue λ , then φ ◦ h is an eigenfunction of U T at eigenvalue λ Shubhendu Trivedi (TTI-C) Koopman Operators 25 / 50

  48. Example: Linear Diagonalizable Systems Let y ( k ) = ( y ( k ) 2 ) T ( ( k ) indexes time) 1 , y ( k ) Shubhendu Trivedi (TTI-C) Koopman Operators 26 / 50

  49. Example: Linear Diagonalizable Systems Let y ( k ) = ( y ( k ) 2 ) T ( ( k ) indexes time) 1 , y ( k ) Let y ( k +1) = T y ( k ) Shubhendu Trivedi (TTI-C) Koopman Operators 26 / 50

  50. Example: Linear Diagonalizable Systems Let y ( k ) = ( y ( k ) 2 ) T ( ( k ) indexes time) 1 , y ( k ) Let y ( k +1) = T y ( k ) T is a matrix with eigenvectors v 1 , v 2 at eigenvalues λ 1 , λ 2 with v i � = e j Shubhendu Trivedi (TTI-C) Koopman Operators 26 / 50

  51. Example: Linear Diagonalizable Systems Let y ( k ) = ( y ( k ) 2 ) T ( ( k ) indexes time) 1 , y ( k ) Let y ( k +1) = T y ( k ) T is a matrix with eigenvectors v 1 , v 2 at eigenvalues λ 1 , λ 2 with v i � = e j If V = [ v 1 v 2 ] , then with new coordinates x ( k ) = ( x k 2 ) T = V − 1 y ( k ) 1 , x ( k ) Shubhendu Trivedi (TTI-C) Koopman Operators 26 / 50

  52. Example: Linear Diagonalizable Systems Let y ( k ) = ( y ( k ) 2 ) T ( ( k ) indexes time) 1 , y ( k ) Let y ( k +1) = T y ( k ) T is a matrix with eigenvectors v 1 , v 2 at eigenvalues λ 1 , λ 2 with v i � = e j If V = [ v 1 v 2 ] , then with new coordinates x ( k ) = ( x k 2 ) T = V − 1 y ( k ) 1 , x ( k ) � x ( k +1) � � � x ( k ) � � x ( k ) � � λ 1 0 1 1 1 = := Λ x ( k +1) x ( k ) x ( k ) 0 λ 2 2 2 2 Shubhendu Trivedi (TTI-C) Koopman Operators 26 / 50

  53. Example: Linear Diagonalizable Systems Let y ( k ) = ( y ( k ) 2 ) T ( ( k ) indexes time) 1 , y ( k ) Let y ( k +1) = T y ( k ) T is a matrix with eigenvectors v 1 , v 2 at eigenvalues λ 1 , λ 2 with v i � = e j If V = [ v 1 v 2 ] , then with new coordinates x ( k ) = ( x k 2 ) T = V − 1 y ( k ) 1 , x ( k ) � x ( k +1) � � � x ( k ) � � x ( k ) � � λ 1 0 1 1 1 = := Λ x ( k +1) x ( k ) x ( k ) 0 λ 2 2 2 2 Maps Λ and T are topologically conjugate by Λ V − 1 = V − 1 T Shubhendu Trivedi (TTI-C) Koopman Operators 26 / 50

  54. Example: Linear Diagonalizable Systems Let y ( k ) = ( y ( k ) 2 ) T ( ( k ) indexes time) 1 , y ( k ) Let y ( k +1) = T y ( k ) T is a matrix with eigenvectors v 1 , v 2 at eigenvalues λ 1 , λ 2 with v i � = e j If V = [ v 1 v 2 ] , then with new coordinates x ( k ) = ( x k 2 ) T = V − 1 y ( k ) 1 , x ( k ) � x ( k +1) � � � x ( k ) � � x ( k ) � � λ 1 0 1 1 1 = := Λ x ( k +1) x ( k ) x ( k ) 0 λ 2 2 2 2 Maps Λ and T are topologically conjugate by Λ V − 1 = V − 1 T V − 1 is now the h from the proposition Shubhendu Trivedi (TTI-C) Koopman Operators 26 / 50

  55. Koopman Modes Assume f ∈ F is an observable in the linear span of a set of eigenfunctions { φ i } n 1 , then for c i ( f ) ∈ C : Shubhendu Trivedi (TTI-C) Koopman Operators 27 / 50

  56. Koopman Modes Assume f ∈ F is an observable in the linear span of a set of eigenfunctions { φ i } n 1 , then for c i ( f ) ∈ C : n � f ( p ) = c i ( f ) φ i ( p ) i =1 Shubhendu Trivedi (TTI-C) Koopman Operators 27 / 50

  57. Koopman Modes Assume f ∈ F is an observable in the linear span of a set of eigenfunctions { φ i } n 1 , then for c i ( f ) ∈ C : n � f ( p ) = c i ( f ) φ i ( p ) i =1 Dynamics of f have a simple form: n n � � [ Uf ]( p ) = f ( T ( p )) = c i ( f ) φ i ( T ( p )) = c i ( f )[ Uφ i ]( p ) i =1 i =1 Shubhendu Trivedi (TTI-C) Koopman Operators 27 / 50

  58. Koopman Modes Assume f ∈ F is an observable in the linear span of a set of eigenfunctions { φ i } n 1 , then for c i ( f ) ∈ C : n � f ( p ) = c i ( f ) φ i ( p ) i =1 Dynamics of f have a simple form: n n � � [ Uf ]( p ) = f ( T ( p )) = c i ( f ) φ i ( T ( p )) = c i ( f )[ Uφ i ]( p ) i =1 i =1 n � [ Uf ]( p ) = f ( T ( p )) = λ i c i ( f ) φ i ( p ) i =1 Shubhendu Trivedi (TTI-C) Koopman Operators 27 / 50

  59. Koopman Modes Dynamics of f have a simple form: n n � � [ Uf ]( p ) = f ( T ( p )) = c i ( f ) φ i ( T ( p )) = c i ( f )[ Uφ i ]( p ) i =1 i =1 Shubhendu Trivedi (TTI-C) Koopman Operators 28 / 50

  60. Koopman Modes Dynamics of f have a simple form: n n � � [ Uf ]( p ) = f ( T ( p )) = c i ( f ) φ i ( T ( p )) = c i ( f )[ Uφ i ]( p ) i =1 i =1 n � [ Uf ]( p ) = f ( T ( p )) = λ i c i ( f ) φ i ( p ) i =1 Shubhendu Trivedi (TTI-C) Koopman Operators 28 / 50

  61. Koopman Modes Dynamics of f have a simple form: n n � � [ Uf ]( p ) = f ( T ( p )) = c i ( f ) φ i ( T ( p )) = c i ( f )[ Uφ i ]( p ) i =1 i =1 n � [ Uf ]( p ) = f ( T ( p )) = λ i c i ( f ) φ i ( p ) i =1 Likewise n [ U m f ]( p ) = � λ m i c i ( f ) φ i ( p ) i =1 Shubhendu Trivedi (TTI-C) Koopman Operators 28 / 50

  62. Koopman Modes Extension to vector valued observables F = ( f 1 , . . . , f K ) T , with each f i in the closed linear span of eigenfunctions: Shubhendu Trivedi (TTI-C) Koopman Operators 29 / 50

  63. Koopman Modes Extension to vector valued observables F = ( f 1 , . . . , f K ) T , with each f i in the closed linear span of eigenfunctions:   c i ( f 1 ) n . � [ U k F ]( p ) = λ m . i φ i ( p )   .   i =1 c i ( f K ) Shubhendu Trivedi (TTI-C) Koopman Operators 29 / 50

  64. Koopman Modes Extension to vector valued observables F = ( f 1 , . . . , f K ) T , with each f i in the closed linear span of eigenfunctions:   c i ( f 1 ) n . � [ U k F ]( p ) = λ m . i φ i ( p )   .   i =1 c i ( f K ) Written compactly: Shubhendu Trivedi (TTI-C) Koopman Operators 29 / 50

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend