joint optimization of segmentation and appearance models
play

Joint Optimization of Segmentation and Appearance Models David - PowerPoint PPT Presentation

Joint Optimization of Segmentation and Appearance Models David Mandle, Sameep Tandon April 29, 2013 David Mandle, Sameep Tandon (Stanford) April 29, 2013 1 / 19 Overview 1 Recap: Image Segmentation 2 Optimization Strategy 3 Experimental


  1. Joint Optimization of Segmentation and Appearance Models David Mandle, Sameep Tandon April 29, 2013 David Mandle, Sameep Tandon (Stanford) April 29, 2013 1 / 19

  2. Overview 1 Recap: Image Segmentation 2 Optimization Strategy 3 Experimental David Mandle, Sameep Tandon (Stanford) April 29, 2013 2 / 19

  3. Recap: Image Segmentation Problem Segment an image into foreground and background Figure: Left: Input image. Middle: Segmentation by EM (GrabCut). Right: Segmentation by the method covered today David Mandle, Sameep Tandon (Stanford) April 29, 2013 3 / 19

  4. Recap: Image Segmentation as Energy Optimization Recall Grid Structured Markov Random Field: Latent variables x i ∈ { 0 , 1 } corresponding to foreground/background Observations z i . Take to be RGB pixel values Edge potentials Φ( x i , z i ), Ψ( x i , x j ) David Mandle, Sameep Tandon (Stanford) April 29, 2013 4 / 19

  5. Recap: Image Segmentation as Energy Optimization The Graphical Model encodes the following (unnormalized) probability distribution: David Mandle, Sameep Tandon (Stanford) April 29, 2013 5 / 19

  6. Recap: Image Segmentation as Energy Optimization Goal: find x to maximize P ( x , z ) ( z is observed) David Mandle, Sameep Tandon (Stanford) April 29, 2013 6 / 19

  7. Recap: Image Segmentation as Energy Optimization Goal: find x to maximize P ( x , z ) ( z is observed) Taking logs: � � E ( x , z ) = φ ( x i , z i ) + ψ ( x i , x j ) i i , j David Mandle, Sameep Tandon (Stanford) April 29, 2013 6 / 19

  8. Recap: Image Segmentation as Energy Optimization Goal: find x to maximize P ( x , z ) ( z is observed) Taking logs: � � E ( x , z ) = φ ( x i , z i ) + ψ ( x i , x j ) i i , j Unary potential φ ( x i , z i ) encodes how likely it is for a pixel or patch y i to belong to segmentation x i . David Mandle, Sameep Tandon (Stanford) April 29, 2013 6 / 19

  9. Recap: Image Segmentation as Energy Optimization Goal: find x to maximize P ( x , z ) ( z is observed) Taking logs: � � E ( x , z ) = φ ( x i , z i ) + ψ ( x i , x j ) i i , j Unary potential φ ( x i , z i ) encodes how likely it is for a pixel or patch y i to belong to segmentation x i . Pairwise potential ψ ( x i , x j ) encodes neighborhood info about pixel/patch segmentation labels David Mandle, Sameep Tandon (Stanford) April 29, 2013 6 / 19

  10. Recap: GrabCut Model Unary Potentials: log of Gaussian Mixture Model ◮ But to deal with tractability, we assign each x i to component k i φ ( x i , k i , θ | z i ) = − log π ( x i , k i ) + log N ( z i ; µ ( k i ) , Σ( k i )) David Mandle, Sameep Tandon (Stanford) April 29, 2013 7 / 19

  11. Recap: GrabCut Model Unary Potentials: log of Gaussian Mixture Model ◮ But to deal with tractability, we assign each x i to component k i φ ( x i , k i , θ | z i ) = − log π ( x i , k i ) + log N ( z i ; µ ( k i ) , Σ( k i )) Pairwise Potentials: ψ ( x i , x j | z i , z j ) = [ x i � = x j ] exp( − β − 1 � z i − z j � 2 ) where β = 2 · avg( � z i − z j � 2 ) David Mandle, Sameep Tandon (Stanford) April 29, 2013 7 / 19

  12. Recap: GrabCut Optimization Strategy GrabCut EM Algorithm 1 Initialize Mixture Models David Mandle, Sameep Tandon (Stanford) April 29, 2013 8 / 19

  13. Recap: GrabCut Optimization Strategy GrabCut EM Algorithm 1 Initialize Mixture Models 2 Assign GMM components: k i = arg min k φ ( x i , k i , θ | z i ) David Mandle, Sameep Tandon (Stanford) April 29, 2013 8 / 19

  14. Recap: GrabCut Optimization Strategy GrabCut EM Algorithm 1 Initialize Mixture Models 2 Assign GMM components: k i = arg min k φ ( x i , k i , θ | z i ) 3 Get GMM parameters: � θ = arg min φ ( x i , k i , θ | z i ) θ i David Mandle, Sameep Tandon (Stanford) April 29, 2013 8 / 19

  15. Recap: GrabCut Optimization Strategy GrabCut EM Algorithm 1 Initialize Mixture Models 2 Assign GMM components: k i = arg min k φ ( x i , k i , θ | z i ) 3 Get GMM parameters: � θ = arg min φ ( x i , k i , θ | z i ) θ i 4 Perform segmentation using reduction to min-cut: x = arg min x E ( x , z ; k , θ ) David Mandle, Sameep Tandon (Stanford) April 29, 2013 8 / 19

  16. Recap: GrabCut Optimization Strategy GrabCut EM Algorithm 1 Initialize Mixture Models 2 Assign GMM components: k i = arg min k φ ( x i , k i , θ | z i ) 3 Get GMM parameters: � θ = arg min φ ( x i , k i , θ | z i ) θ i 4 Perform segmentation using reduction to min-cut: x = arg min x E ( x , z ; k , θ ) 5 Iterate from step 2 until converged David Mandle, Sameep Tandon (Stanford) April 29, 2013 8 / 19

  17. New Model Let’s consider a simpler model. This will be useful soon Unary terms: Histograms David Mandle, Sameep Tandon (Stanford) April 29, 2013 9 / 19

  18. New Model Let’s consider a simpler model. This will be useful soon Unary terms: Histograms ◮ K bins, b i is bin of pixel z i David Mandle, Sameep Tandon (Stanford) April 29, 2013 9 / 19

  19. New Model Let’s consider a simpler model. This will be useful soon Unary terms: Histograms ◮ K bins, b i is bin of pixel z i ◮ θ 0 , θ 1 ∈ [0 , 1] K represent color models (distributions) over foreground/background David Mandle, Sameep Tandon (Stanford) April 29, 2013 9 / 19

  20. New Model Let’s consider a simpler model. This will be useful soon Unary terms: Histograms ◮ K bins, b i is bin of pixel z i ◮ θ 0 , θ 1 ∈ [0 , 1] K represent color models (distributions) over foreground/background ◮ φ ( x i , b i , θ ) = − log θ x i b i David Mandle, Sameep Tandon (Stanford) April 29, 2013 9 / 19

  21. New Model Let’s consider a simpler model. This will be useful soon Unary terms: Histograms ◮ K bins, b i is bin of pixel z i ◮ θ 0 , θ 1 ∈ [0 , 1] K represent color models (distributions) over foreground/background ◮ φ ( x i , b i , θ ) = − log θ x i b i Pairwise Potentials ψ ( x i , x j ) = w ij | x i − x j | We will define w ij later; for now, consider pairwise equal to Grabcut David Mandle, Sameep Tandon (Stanford) April 29, 2013 9 / 19

  22. New Model Let’s consider a simpler model. This will be useful soon Unary terms: Histograms ◮ K bins, b i is bin of pixel z i ◮ θ 0 , θ 1 ∈ [0 , 1] K represent color models (distributions) over foreground/background ◮ φ ( x i , b i , θ ) = − log θ x i b i Pairwise Potentials ψ ( x i , x j ) = w ij | x i − x j | We will define w ij later; for now, consider pairwise equal to Grabcut Total Energy: � � E ( x , θ 0 , θ 1 ) = − log P ( z p | θ x p ) + w pq | x p − x q | p ∈ V ( p , q ) ∈ N P ( z p | θ x p ) = θ x p b p David Mandle, Sameep Tandon (Stanford) April 29, 2013 9 / 19

  23. EM under new model 1 Initialize histograms θ 0 , θ 1 . David Mandle, Sameep Tandon (Stanford) April 29, 2013 10 / 19

  24. EM under new model 1 Initialize histograms θ 0 , θ 1 . 2 Fix θ . Perform segmentation using reduction to min-cut: x E ( x , θ 0 , θ 1 ) x = arg min David Mandle, Sameep Tandon (Stanford) April 29, 2013 10 / 19

  25. EM under new model 1 Initialize histograms θ 0 , θ 1 . 2 Fix θ . Perform segmentation using reduction to min-cut: x E ( x , θ 0 , θ 1 ) x = arg min 3 Fix x. Compute θ 0 , θ 1 (via standard parameter fitting). David Mandle, Sameep Tandon (Stanford) April 29, 2013 10 / 19

  26. EM under new model 1 Initialize histograms θ 0 , θ 1 . 2 Fix θ . Perform segmentation using reduction to min-cut: x E ( x , θ 0 , θ 1 ) x = arg min 3 Fix x. Compute θ 0 , θ 1 (via standard parameter fitting). 4 Iterate from step 2 until converged David Mandle, Sameep Tandon (Stanford) April 29, 2013 10 / 19

  27. Optimization Goal: Minimize Energy min x E ( x ) � � h k ( n 1 + h ( n 1 ) E ( x ) = k ) + w pq | x p − x q | � �� � k ( p , q ) ∈ N E 2 ( x ) � �� � E 1 ( x ) k = � p ∈ V k x p and n 1 = � where n 1 p ∈ V x p David Mandle, Sameep Tandon (Stanford) April 29, 2013 11 / 19

  28. Optimization Goal: Minimize Energy min x E ( x ) � � h k ( n 1 + h ( n 1 ) E ( x ) = k ) + w pq | x p − x q | � �� � k ( p , q ) ∈ N E 2 ( x ) � �� � E 1 ( x ) k = � p ∈ V k x p and n 1 = � where n 1 p ∈ V x p This is hard! David Mandle, Sameep Tandon (Stanford) April 29, 2013 11 / 19

  29. Optimization Goal: Minimize Energy min x E ( x ) � � h k ( n 1 + h ( n 1 ) E ( x ) = k ) + w pq | x p − x q | � �� � k ( p , q ) ∈ N E 2 ( x ) � �� � E 1 ( x ) k = � p ∈ V k x p and n 1 = � where n 1 p ∈ V x p This is hard! But efficient strategies for optimizing E 1 ( x ) and E 2 ( x ) separately David Mandle, Sameep Tandon (Stanford) April 29, 2013 11 / 19

  30. Optimization via Dual Decomposition Consider an optimization of the form min x f 1 ( x ) + f 2 ( x ) David Mandle, Sameep Tandon (Stanford) April 29, 2013 12 / 19

  31. Optimization via Dual Decomposition Consider an optimization of the form min x f 1 ( x ) + f 2 ( x ) where optimizing f ( x ) = f 1 ( x ) + f 2 ( x ) is hard David Mandle, Sameep Tandon (Stanford) April 29, 2013 12 / 19

  32. Optimization via Dual Decomposition Consider an optimization of the form min x f 1 ( x ) + f 2 ( x ) where optimizing f ( x ) = f 1 ( x ) + f 2 ( x ) is hard But min x f 1 ( x ) and min x f 2 ( x ) are easy problems David Mandle, Sameep Tandon (Stanford) April 29, 2013 12 / 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend