ism structure order from chaos
play

ISM Structure: Order from Chaos Philip Hopkins with Eliot Quataert, - PowerPoint PPT Presentation

ISM Structure: Order from Chaos Philip Hopkins with Eliot Quataert, Norm Murray, Lars Hernquist, Dusan Keres, Todd Thompson, Desika Narayanan, Dan Kasen, T. J. Cox, Chris Hayward, Kevin Bundy, & more Thursday, August 16, 12 The Turbulent


  1. ISM Structure: Order from Chaos Philip Hopkins with Eliot Quataert, Norm Murray, Lars Hernquist, Dusan Keres, Todd Thompson, Desika Narayanan, Dan Kasen, T. J. Cox, Chris Hayward, Kevin Bundy, & more Thursday, August 16, 12

  2. The Turbulent ISM LMC IMPORTANT ON (ALMOST) ALL SCALES  Gravity  Turbulence  Magnetic, Thermal, Cosmic Ray, Radiation Pressure  Cooling (atomic, molecular, metal-line, free-free)  Star & BH Formation/Growth  “Feedback”: Massive stars, SNe, BHs, external galaxies, etc. Thursday, August 16, 12

  3. The ISM YET THERE IS SURPRISING REGULARITY Giant Molecular Clouds: Stars & Pre-Stellar Gas Cores: MW Bastian LMC Chabrier SMC M33 M31 Number (dN/dM) IC10 Number Blitz, Rosolowski et al. Mass [M � ] Thursday, August 16, 12

  4. The ISM YET THERE IS SURPRISING REGULARITY Giant Molecular Clouds: Stars & Pre-Stellar Gas Cores: MW Bastian LMC Chabrier d N SMC d M ∝ M − 1 . 8 M33 M31 Number (dN/dM) IC10 Number ∝ M − 2 . 2 Blitz, Rosolowski et al. Mass [M � ] Thursday, August 16, 12

  5. The ISM YET THERE IS SURPRISING REGULARITY Giant Molecular Clouds: Stars & Pre-Stellar Gas Cores: MW Bastian LMC Chabrier d N SMC d M ∝ M − 1 . 8 M33 M31 Number (dN/dM) IC10 Number DM Halos?! ∝ M − 2 . 2 Blitz, Rosolowski et al. Mass [M � ] Thursday, August 16, 12

  6. Extended Press-Schechter / Excursion-Set Formalism LMC  Press & Schechter ‘74: r Fluctuations a Gaussian random field   Know linear power spectrum P(k~1/r): variance ~ k 3 P(k) Thursday, August 16, 12

  7. Extended Press-Schechter / Excursion-Set Formalism LMC  Press & Schechter ‘74: r Fluctuations a Gaussian random field   Know linear power spectrum P(k~1/r): variance ~ k 3 P(k)  “Count” mass above critical fluctuation: “Halos”  Turnaround & gravitational collapse ρ ( < R ∼ 1 /k ) > ρ crit ¯ Thursday, August 16, 12

  8. Extended Press-Schechter / Excursion-Set Formalism LMC  Press & Schechter ‘74: r Fluctuations a Gaussian random field   Know linear power spectrum P(k~1/r): variance ~ k 3 P(k)  “Count” mass above critical fluctuation: “Halos”  Turnaround & gravitational collapse ρ ( < R ∼ 1 /k ) > ρ crit ¯  Generalize to conditional probabilities, N-point statistics, resolve “cloud in cloud” problem (e.g. Bond et al. 1991) Thursday, August 16, 12

  9. Turbulence BASIC EXPECTATIONS ( k E ( k ) ∼ u t ( k ) 2 ) E ( k ) ∝ k − p Velocity: Thursday, August 16, 12

  10. Turbulence BASIC EXPECTATIONS ( k E ( k ) ∼ u t ( k ) 2 ) E ( k ) ∝ k − p Velocity: h � (ln ρ � h ln ρ i ) 2 1 i Lognormal in r : Density: d p (ln ρ | R ) = exp p 2 S ( R ) 2 π S ( R ) Vasquez-Semadeni, Nordlund, Padoan, Ostriker, & others Text Thursday, August 16, 12

  11. Turbulence BASIC EXPECTATIONS ( k E ( k ) ∼ u t ( k ) 2 ) E ( k ) ∝ k − p Velocity: h � (ln ρ � h ln ρ i ) 2 1 i Lognormal in r : Density: d p (ln ρ | R ) = exp p 2 S ( R ) 2 π S ( R ) Vasquez-Semadeni, Nordlund, Padoan, Ostriker, & others Text Z d ln k S k | W ( k, R ) | 2 S ( R ) = Thursday, August 16, 12

  12. What Defines a Fluctuation of Interest? DISPERSION RELATION: s k 2 + u t ( k ) 2 k 2 − 4 π G ρ | k | h ω 2 = κ 2 + c 2 1 + | k | h Chandrasekhar ‘51, Vandervoort ‘70, Toomre ‘77 Thursday, August 16, 12

  13. What Defines a Fluctuation of Interest? DISPERSION RELATION: s k 2 + u t ( k ) 2 k 2 − 4 π G ρ | k | h ω 2 = κ 2 + c 2 1 + | k | h Angular Momentum κ ∼ V disk R disk Chandrasekhar ‘51, Vandervoort ‘70, Toomre ‘77 Thursday, August 16, 12

  14. What Defines a Fluctuation of Interest? DISPERSION RELATION: s k 2 + u t ( k ) 2 k 2 − 4 π G ρ | k | h ω 2 = κ 2 + c 2 1 + | k | h Angular Momentum Thermal Pressure κ ∼ V disk ∝ r − 2 R disk Chandrasekhar ‘51, Vandervoort ‘70, Toomre ‘77 Thursday, August 16, 12

  15. What Defines a Fluctuation of Interest? DISPERSION RELATION: s k 2 + u t ( k ) 2 k 2 − 4 π G ρ | k | h ω 2 = κ 2 + c 2 1 + | k | h Angular Momentum Thermal Turbulence Pressure ∝ r p − 3 ∼ r − 1 κ ∼ V disk ∝ r − 2 u 2 t > c 2 R disk r > r sonic : s Chandrasekhar ‘51, Vandervoort ‘70, Toomre ‘77 Thursday, August 16, 12

  16. What Defines a Fluctuation of Interest? DISPERSION RELATION: s k 2 + u t ( k ) 2 k 2 − 4 π G ρ | k | h ω 2 = κ 2 + c 2 1 + | k | h Angular Momentum Thermal Gravity Turbulence Pressure ∝ r p − 3 ∼ r − 1 κ ∼ V disk ∝ r − 2 u 2 t > c 2 R disk r > r sonic : s Chandrasekhar ‘51, Vandervoort ‘70, Toomre ‘77 Thursday, August 16, 12

  17. What Defines a Fluctuation of Interest? DISPERSION RELATION: s k 2 + u t ( k ) 2 k 2 − 4 π G ρ | k | h ω 2 = κ 2 + c 2 1 + | k | h Angular Momentum Thermal Gravity Turbulence Pressure ∝ r p − 3 ∼ r − 1 κ ∼ V disk ∝ r − 2 u 2 t > c 2 R disk r > r sonic : s Mode Grows (Collapses) when w<0: 2 h i ( M − 2 + | kh | 1 − p ) kh + ρ > ρ c ( k ) = ρ 0 (1 + | kh | ) h | kh | Chandrasekhar ‘51, Vandervoort ‘70, Toomre ‘77 Thursday, August 16, 12

  18. PFH 2011 “Counting” Collapsing Objects EVALUATE DENSITY FIELD vs. “BARRIER” Averaging Scale R [pc] Log[ Density / Mean ] Thursday, August 16, 12

  19. PFH 2011 “Counting” Collapsing Objects EVALUATE DENSITY FIELD vs. “BARRIER” Averaging Scale R [pc] Log[ Density / Mean ] Thursday, August 16, 12

  20. PFH 2011 “Counting” Collapsing Objects EVALUATE DENSITY FIELD vs. “BARRIER” Averaging Scale R [pc] Thermal+ Magnetic Log[ Density / Mean ] Turbulence Angular Momentum Thursday, August 16, 12

  21. PFH 2011 “Counting” Collapsing Objects EVALUATE DENSITY FIELD vs. “BARRIER” Averaging Scale R [pc] Thermal+ Magnetic Log[ Density / Mean ] Turbulence Angular Momentum Thursday, August 16, 12

  22. PFH 2011 “Counting” Collapsing Objects EVALUATE DENSITY FIELD vs. “BARRIER” Averaging Scale R [pc] Thermal+ Magnetic Log[ Density / Mean ] Turbulence Angular Momentum Thursday, August 16, 12

  23. PFH 2011 “Counting” Collapsing Objects EVALUATE DENSITY FIELD vs. “BARRIER” Averaging Scale R [pc] Thermal+ Magnetic Log[ Density / Mean ] Turbulence Angular Momentum Thursday, August 16, 12

  24. PFH 2011 “Counting” Collapsing Objects EVALUATE DENSITY FIELD vs. “BARRIER” Averaging Scale R [pc] Log[ Density / Mean ] First Crossing Thursday, August 16, 12

  25. PFH 2011 “Counting” Collapsing Objects EVALUATE DENSITY FIELD vs. “BARRIER” Averaging Scale R [pc] Log[ Density / Mean ] First Crossing GMCs Thursday, August 16, 12

  26. PFH 2011 “Counting” Collapsing Objects EVALUATE DENSITY FIELD vs. “BARRIER” Averaging Scale R [pc] Last Crossing Log[ Density / Mean ] First Crossing GMCs Thursday, August 16, 12

  27. PFH 2011 “Counting” Collapsing Objects EVALUATE DENSITY FIELD vs. “BARRIER” Averaging Scale R [pc] Last Crossing Log[ Density / Mean ] Cores/IMF First Crossing GMCs Thursday, August 16, 12

  28. Evolve the Fluctuations in Time CONSTRUCT “MERGER/FRAGMENTATION” TREES − ( δ − δ ( t = 0) exp [ − τ ]) 2 1 h i p ( δ | τ ) = exp p 2 S (1 − exp [ − 2 τ ]) 2 π S (1 − exp [ − 2 τ ]) Time Thursday, August 16, 12

  29. Evolve the Fluctuations in Time CONSTRUCT “MERGER/FRAGMENTATION” TREES − ( δ − δ ( t = 0) exp [ − τ ]) 2 1 h i p ( δ | τ ) = exp p 2 S (1 − exp [ − 2 τ ]) 2 π S (1 − exp [ − 2 τ ]) Time Fraction Collapsed Per Crossing Time Simulations (Cooling+Gravity+MHD) Padoan & Nordlund Vazquez-Semadeni PFH 2011 Thursday, August 16, 12

  30. The “First Crossing” Mass Function VS GIANT MOLECULAR CLOUDS Number (>M cloud ) PFH 2011 log[ M cloud / M sun ] Thursday, August 16, 12

  31. The “First Crossing” Mass Function VS GIANT MOLECULAR CLOUDS r sonic ⌧ r ⌧ h S ( r ) ∼ S 0 Number (>M cloud ) PFH 2011 log[ M cloud / M sun ] Thursday, August 16, 12

  32. The “First Crossing” Mass Function VS GIANT MOLECULAR CLOUDS r sonic ⌧ r ⌧ h S ( r ) ∼ S 0 Number (>M cloud ) d n d M ∝ M − α e − ( M/M J ) β PFH 2011 log[ M cloud / M sun ] Thursday, August 16, 12

  33. The “First Crossing” Mass Function VS GIANT MOLECULAR CLOUDS r sonic ⌧ r ⌧ h S ( r ) ∼ S 0 Number (>M cloud ) d n d M ∝ M − α e − ( M/M J ) β α ≈ − 2 + (3 − p ) 2 ⇣ M J ⌘ ln 2 S p 2 M ⇣ M J ⌘ ≈ − 2 + 0 . 1 log M PFH 2011 log[ M cloud / M sun ] Thursday, August 16, 12

  34. The “First Crossing” Mass Function VS GIANT MOLECULAR CLOUDS r sonic ⌧ r ⌧ h S ( r ) ∼ S 0 Number (>M cloud ) d n d M ∝ M − α e − ( M/M J ) β α ≈ − 2 + (3 − p ) 2 ⇣ M J ⌘ ln 2 S p 2 M ⇣ M J ⌘ ⇣ M J ≈ − 2 + 0 . 1 log ⌘ α ≈ − 2 + 0 . 1 log M M PFH 2011 log[ M cloud / M sun ] Thursday, August 16, 12

  35. The “First Crossing” Mass Function VS GIANT MOLECULAR CLOUDS r sonic ⌧ r ⌧ h S ( r ) ∼ S 0 Number (>M cloud ) d n d M ∝ M − α e − ( M/M J ) β α ≈ − 2 + (3 − p ) 2 ⇣ M J ⌘ ln 2 S p 2 M ⇣ M J ⌘ ⇣ M J ≈ − 2 + 0 . 1 log ⌘ α ≈ − 2 + 0 . 1 log M M PFH 2011 log[ M cloud / M sun ] Thursday, August 16, 12

  36. The “Last Crossing” Mass Function PFH 2012 VS PROTOSTELLAR CORES & THE STELLAR IMF Thursday, August 16, 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend