invariance of conjunctions of polynomial equalities for
play

Invariance of Conjunctions of Polynomial Equalities for Algebraic - PowerPoint PPT Presentation

Invariance of Conjunctions of Polynomial Equalities for Algebraic Differential Equations Khalil Ghorbal 1 Andrew Sogokon 2 e Platzer 1 Andr 1. Carnegie Mellon University 2. University of Edinburgh SAS, Munich, Germany September 11th, 2014


  1. Invariance of Conjunctions of Polynomial Equalities for Algebraic Differential Equations Khalil Ghorbal 1 Andrew Sogokon 2 e Platzer 1 Andr´ 1. Carnegie Mellon University 2. University of Edinburgh SAS, Munich, Germany September 11th, 2014 K. Ghorbal, A. Sogokon, A. Platzer Invariance of Conjunctive Equations SAS 2014 1 / 24

  2. Introduction Problem: Checking the Invariance of Algebraic Sets Ordinary Differential Equation     ˙ x yz  =  = f y ˙ − xz   z ˙ − xy Algebraic Sets S = { ( x , y , z ) | 3 x 2 + 3 y 2 − 2 x 2 y 2 + 3 z 2 − 2 x 2 z 2 − 2 y 2 z 2 = 0 } � �� � p ( x , y , z ) K. Ghorbal, A. Sogokon, A. Platzer Invariance of Conjunctive Equations SAS 2014 2 / 24

  3. Introduction Motivations • Theorem Proving with Hybrid Systems • Stability and Safety Analysis of Dynamical Systems • Qualitative Analysis of Differential Equations K. Ghorbal, A. Sogokon, A. Platzer Invariance of Conjunctive Equations SAS 2014 3 / 24

  4. Introduction Related and Previous Work • Invariance of algebraic sets is decidable • 2 procedures are available: Liu et al. [Liu Zhan Zhao 2011] Differential Radical Characterization [TACAS’14] In this talk We build on top of our previous work [TACAS’14]: • New efficient procedure for algebraic sets • New proof strategies exploiting differential cuts K. Ghorbal, A. Sogokon, A. Platzer Invariance of Conjunctive Equations SAS 2014 4 / 24

  5. Introduction Related and Previous Work • Invariance of algebraic sets is decidable • 2 procedures are available: Liu et al. [Liu Zhan Zhao 2011] Differential Radical Characterization [TACAS’14] In this talk We build on top of our previous work [TACAS’14]: • New efficient procedure for algebraic sets • New proof strategies exploiting differential cuts K. Ghorbal, A. Sogokon, A. Platzer Invariance of Conjunctive Equations SAS 2014 4 / 24

  6. Introduction Abstracting Orbits Using Algebraic Sets 1.0 Concrete Domain 0.5 The trajectory of the solution of an x 2 0.0 Initial Value Problem (˙ x = f , x 0 ). � 0.5 Abstract Domain � 1.0 Algebraic Sets. � 1.0 � 0.5 0.0 0.5 1.0 x 1 Problem: Checking soundness Checking the soundness of the abstraction: does a given algebraic set overapproximate the trajectory of the solution ? K. Ghorbal, A. Sogokon, A. Platzer Invariance of Conjunctive Equations SAS 2014 5 / 24

  7. Efficient Procedure for Algebraic Sets Outline Introduction 1 Efficient Procedure for Algebraic Sets 2 Alternative Lightweight Approach 3 Conclusion 4 K. Ghorbal, A. Sogokon, A. Platzer Invariance of Conjunctive Equations SAS 2014 5 / 24

  8. Efficient Procedure for Algebraic Sets Notation for“ p = 0 is invariant for f ” ( p = 0) → [˙ x = f ]( p = 0) ≡ Zero set of p is an invariant algebraic set for f ≡ Starting with x 0 s.t p ( x 0 ) = 0: for all t > 0, x ( t ) solution of the IVP (˙ x = f , x (0) = x 0 ) is a zero of p N.B. Treating ˙ x = f as a program, one can think of the top formula as representing the Hoare triple { p = 0 } ˙ x = f { p = 0 } . K. Ghorbal, A. Sogokon, A. Platzer Invariance of Conjunctive Equations SAS 2014 6 / 24

  9. Efficient Procedure for Algebraic Sets Notation for“ p = 0 is invariant for f ” ( p = 0) → [˙ x = f ]( p = 0) ≡ Zero set of p is an invariant algebraic set for f ≡ Starting with x 0 s.t p ( x 0 ) = 0: for all t > 0, x ( t ) solution of the IVP (˙ x = f , x (0) = x 0 ) is a zero of p N.B. Treating ˙ x = f as a program, one can think of the top formula as representing the Hoare triple { p = 0 } ˙ x = f { p = 0 } . K. Ghorbal, A. Sogokon, A. Platzer Invariance of Conjunctive Equations SAS 2014 6 / 24

  10. Efficient Procedure for Algebraic Sets Notation for“ p = 0 is invariant for f ” ( p = 0) → [˙ x = f ]( p = 0) ≡ Zero set of p is an invariant algebraic set for f ≡ Starting with x 0 s.t p ( x 0 ) = 0: for all t > 0, x ( t ) solution of the IVP (˙ x = f , x (0) = x 0 ) is a zero of p N.B. Treating ˙ x = f as a program, one can think of the top formula as representing the Hoare triple { p = 0 } ˙ x = f { p = 0 } . K. Ghorbal, A. Sogokon, A. Platzer Invariance of Conjunctive Equations SAS 2014 6 / 24

  11. Efficient Procedure for Algebraic Sets Some Useful Definitions Lie Derivative along a vector field ˙ x = f n n ∂ p ∂ p f i = dp ( x ( t )) � � D ( p ) def = x i = ˙ ∂ x i ∂ x i dt i =1 i =1 Higher-order Lie derivatives: D ( k +1) ( p ) = D ( D ( k ) ( p )) Ideal Membership ∃ λ i ∈ R [ x ] : p = λ 1 q 1 + · · · + λ r q r ↔ p ∈ � q 1 , . . . , q r � Ideal membership can be checked effectively using Gr¨ obner bases. K. Ghorbal, A. Sogokon, A. Platzer Invariance of Conjunctive Equations SAS 2014 7 / 24

  12. Efficient Procedure for Algebraic Sets Differential Radical Characterization [TACAS’14] D ( N p ) ( p ) ∈ � p , . . . , D ( N p − 1) ( p ) � ∧ p = 0 → D ( N p − 1) ( p ) = 0 . . . D (3) ( p ) ∈ � p , D ( p ) , D (2) ( p ) � ∧ p = 0 → D (2) ( p ) = 0 D (2) ( p ) ∈ � p , D ( p ) � ∧ p = 0 → D ( p ) = 0 D ( p ) ∈ � p � ( ∃ λ ∈ R [ x ] : D ( p ) = λ p ) ( p = 0) → [˙ x = f ]( p = 0) • order N p is finite : unknown a priori and computed on the fly • < N p ideal membership problems: D ( i +1) ( p ) ∈ � p , . . . , D ( i ) ( p ) � • < N p − 1 quantifier elimination problems: p = 0 → D ( i ) ( p ) = 0 K. Ghorbal, A. Sogokon, A. Platzer Invariance of Conjunctive Equations SAS 2014 8 / 24

  13. Efficient Procedure for Algebraic Sets Differential Radical Characterization [TACAS’14] D ( N p ) ( p ) ∈ � p , . . . , D ( N p − 1) ( p ) � ∧ p = 0 → D ( N p − 1) ( p ) = 0 . . . D (3) ( p ) ∈ � p , D ( p ) , D (2) ( p ) � ∧ p = 0 → D (2) ( p ) = 0 D (2) ( p ) ∈ � p , D ( p ) � ∧ p = 0 → D ( p ) = 0 ✗ D ( p ) ∈ � p � ( ∃ λ ∈ R [ x ] : D ( p ) = λ p ) ( p = 0) → [˙ x = f ]( p = 0) • order N p is finite : unknown a priori and computed on the fly • < N p ideal membership problems: D ( i +1) ( p ) ∈ � p , . . . , D ( i ) ( p ) � • < N p − 1 quantifier elimination problems: p = 0 → D ( i ) ( p ) = 0 K. Ghorbal, A. Sogokon, A. Platzer Invariance of Conjunctive Equations SAS 2014 8 / 24

  14. Efficient Procedure for Algebraic Sets Differential Radical Characterization [TACAS’14] D ( N p ) ( p ) ∈ � p , . . . , D ( N p − 1) ( p ) � ∧ p = 0 → D ( N p − 1) ( p ) = 0 . . . D (3) ( p ) ∈ � p , D ( p ) , D (2) ( p ) � ∧ p = 0 → D (2) ( p ) = 0 ✗ D (2) ( p ) ∈ � p , D ( p ) � ∧ p = 0 → D ( p ) = 0 ✓ ✗ D ( p ) ∈ � p � ( ∃ λ ∈ R [ x ] : D ( p ) = λ p ) ( p = 0) → [˙ x = f ]( p = 0) • order N p is finite : unknown a priori and computed on the fly • < N p ideal membership problems: D ( i +1) ( p ) ∈ � p , . . . , D ( i ) ( p ) � • < N p − 1 quantifier elimination problems: p = 0 → D ( i ) ( p ) = 0 K. Ghorbal, A. Sogokon, A. Platzer Invariance of Conjunctive Equations SAS 2014 8 / 24

  15. Efficient Procedure for Algebraic Sets Differential Radical Characterization [TACAS’14] ✓ D ( N p ) ( p ) ∈ � p , . . . , D ( N p − 1) ( p ) � ∧ p = 0 → D ( N p − 1) ( p ) = 0 ✓ . . . ✗ D (3) ( p ) ∈ � p , D ( p ) , D (2) ( p ) � ∧ p = 0 → D (2) ( p ) = 0 ✓ ✗ D (2) ( p ) ∈ � p , D ( p ) � ∧ p = 0 → D ( p ) = 0 ✓ ✗ D ( p ) ∈ � p � ( ∃ λ ∈ R [ x ] : D ( p ) = λ p ) ( p = 0) → [˙ x = f ]( p = 0) • order N p is finite : unknown a priori and computed on the fly • < N p ideal membership problems: D ( i +1) ( p ) ∈ � p , . . . , D ( i ) ( p ) � • < N p − 1 quantifier elimination problems: p = 0 → D ( i ) ( p ) = 0 K. Ghorbal, A. Sogokon, A. Platzer Invariance of Conjunctive Equations SAS 2014 8 / 24

  16. Efficient Procedure for Algebraic Sets Differential Radical Characterization [TACAS’14] ✓ D ( N p ) ( p ) ∈ � p , . . . , D ( N p − 1) ( p ) � ∧ p = 0 → D ( N p − 1) ( p ) = 0 ✓ . . . ✗ D (3) ( p ) ∈ � p , D ( p ) , D (2) ( p ) � ∧ p = 0 → D (2) ( p ) = 0 ✓ ✗ D (2) ( p ) ∈ � p , D ( p ) � ∧ p = 0 → D ( p ) = 0 ✓ ✗ D ( p ) ∈ � p � ( ∃ λ ∈ R [ x ] : D ( p ) = λ p ) ( p = 0) → [˙ x = f ]( p = 0) • order N p is finite : unknown a priori and computed on the fly • < N p ideal membership problems: D ( i +1) ( p ) ∈ � p , . . . , D ( i ) ( p ) � • < N p − 1 quantifier elimination problems: p = 0 → D ( i ) ( p ) = 0 K. Ghorbal, A. Sogokon, A. Platzer Invariance of Conjunctive Equations SAS 2014 8 / 24

  17. Efficient Procedure for Algebraic Sets Differential Radical Characterization [TACAS’14] ✓ D ( N p ) ( p ) ∈ � p , . . . , D ( N p − 1) ( p ) � ∧ p = 0 → D ( N p − 1) ( p ) = 0 ✓ . . . ✗ D (3) ( p ) ∈ � p , D ( p ) , D (2) ( p ) � ∧ p = 0 → D (2) ( p ) = 0 ✓ ✗ D (2) ( p ) ∈ � p , D ( p ) � ∧ p = 0 → D ( p ) = 0 ✓ ✗ D ( p ) ∈ � p � ( ∃ λ ∈ R [ x ] : D ( p ) = λ p ) ( p = 0) → [˙ x = f ]( p = 0) • order N p is finite : unknown a priori and computed on the fly • < N p ideal membership problems: D ( i +1) ( p ) ∈ � p , . . . , D ( i ) ( p ) � • < N p − 1 quantifier elimination problems: p = 0 → D ( i ) ( p ) = 0 K. Ghorbal, A. Sogokon, A. Platzer Invariance of Conjunctive Equations SAS 2014 8 / 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend