clic module
play

CLIC MODULE Nominal Operation Mode Temperature Results Daskalaki - PowerPoint PPT Presentation

CLIC MODULE Nominal Operation Mode Temperature Results Daskalaki Elena Vamvakas Alex Xydou Anastasia Contents 1. Description 2. FEA simulator 3. Tests summary 4. Preparation phase 5. Experiment 6. Temperature a) Results b) Theoretical


  1. CLIC MODULE Nominal Operation Mode Temperature Results Daskalaki Elena Vamvakas Alex Xydou Anastasia

  2. Contents 1. Description 2. FEA simulator 3. Tests summary 4. Preparation phase 5. Experiment 6. Temperature a) Results b) Theoretical analysis 7. Conclusions

  3. Description The aim of the thermal tests is to: i) Investigate the response of the CLIC module with respect to temperature and displacement when operation-equivalent thermal power is applied ii) Develop and validate a FEA model for the thermal and mechanical simulation of CLIC module Ambient temperature Temperature Air velocity CLIC Water temperature module Thermal power Displacement Water flow rate : ΔΤ=Τ water,out - Τ water,in 3

  4. FEA simulator 8 1a Main Beam Girder 1b Drive Beam Girder 2 SAS 3 Compact Load 4 PETS Unit 5 DBQ 9 6 RF network 7 Vacuum Network 8 Cooling system SAS 9 Cooling system PETS 4

  5. FEA simulator  RF structures are supported by the V-shaped supports  Girders are supported by linear actuators modelled by using springs  Bellows have been modelled by using equivalent stiffness elements with 6 degrees of freedom: axial, 2 angular, 2 lateral and torsional Bellows in ANSYS 5 DB cradle and actuators

  6. FEA simulator  Heaters used in the thermal tests have been modelled in the simulation NOMINAL COMPONENTS POWER (W) SAS 820 PETS 110 CL 150 DBQ 150 6

  7. Phase 1: Preliminary tests INPUT STEP # Q (%) T o,water (°C) OUTPUT T amb (°C) v air (m/s) T i,water (°C) SAS AS Load PETS RFN Load DBQ SAS (+10 °C) PETS (+15 °C) 0.1 20 0.3 0 0 0 0 0 NA NA NA 0.2 20 0.4 0 0 0 0 0 NA NA NA 1. WPS system (study influence 0.3 20 0.5 0 0 0 0 0 NA NA NA of vibrations induced by air 0 speed on WPS measuring 0.4 20 0.6 0 0 0 0 0 NA NA NA system) 0.5 20 0.7 0 0 0 0 0 NA NA NA 0.6 20 0.8 0 0 0 0 0 NA NA NA 1.1 20 0.3 0 0 0 0 0 NA NA NA 1. Temperature sensors 1 1.2 30 0.3 0 0 0 0 0 NA NA NA 2. Alignment 1.3 40 0.3 0 0 0 0 0 NA NA NA 2.1 20 0.4 50 50 0 0 0 25 30 NA 2.2 20 0.4 100 100 0 0 0 25 35 NA 2.3 20 0.8 50 50 0 0 0 25 30 NA 2.4 20 0.8 100 100 0 0 0 25 35 NA 1. Temperature sensors 2 2. Alignment 2.5 40 0.4 50 50 0 0 0 25 30 NA 2.6 40 0.4 100 100 0 0 0 25 35 NA 2.7 40 0.8 50 50 0 0 0 25 30 NA 2.8 40 0.8 100 100 0 0 0 25 35 NA 3.1 20 0.4 0 0 50 50 5 25 NA 32.5 3.2 20 0.4 0 0 100 100 10 25 NA 40 3.3 20 0.8 0 0 50 50 5 25 NA 32.5 3.4 20 0.8 0 0 100 100 10 25 NA 40 1. Temperature sensors 3 2. Alignment 3.5 40 0.4 0 0 50 50 5 25 NA 32.5 3.6 40 0.4 0 0 100 100 10 25 NA 40 3.7 40 0.8 0 0 50 50 5 25 NA 32.5 3.8 40 0.8 0 0 100 100 10 25 NA 40 4.1 20 0.4 50 50 50 50 5 25 30 32.5 4.2 20 0.4 100 100 100 100 10 25 35 40 4.3 20 0.8 50 50 50 50 5 25 30 32.5 4.4 20 0.8 100 100 100 100 10 25 35 40 1. Temperature sensors 4 2. Alignment 4.5 40 0.4 50 50 50 50 5 25 30 32.5 4.6 40 0.4 100 100 100 100 10 25 35 40 4.7 40 0.8 50 50 50 50 5 25 30 32.5 4.8 40 0.8 100 100 100 100 10 25 35 40 7 * EDMS# 1277574

  8. Phase 2: Duty cycles tests INPUT STEP # Q (W) Δ T o,water (°C) T amb (°C) v air (m/s) T i,water (°C) SAS AS Load PETS RFN Load DBQ SAS PETS DBQ only 20 0.7 0 0 0 0 150 25 0 0 Unloaded 20 0.7 820 178 220 178 150 25 10 6 Nominal Loaded 20 0.7 683 137 220 178 150 25 8.3 6 operation DBQ only 40 0.7 0 0 0 0 150 25 0 0 mode Unloaded 40 0.7 820 178 220 178 150 25 10 6 Loaded 40 0.7 683 137 220 178 150 25 8.3 6 Loaded 20 0.7 683 137 220 178 150 25 8.3 6 SAS breakdown 20 0.7 0 27.4 220 178 150 25 0 6 PETS off 20 0.7 0 27.4 55 0 150 25 0 1.5 Failure Loaded 20 0.7 683 137 220 178 150 25 8.3 6 mode SAS Loaded 40 0.7 683 137 220 178 150 25 8.3 6 breakdown SAS breakdown 40 0.7 0 27.4 220 178 150 25 0 6 PETS off 40 0.7 0 27.4 55 0 150 25 0 1.5 Loaded 40 0.7 683 137 220 178 150 25 8.3 6 Loaded 20 0.7 683 137 220 178 150 25 8.3 6 PETS breakdown 20 0.7 683 137 55 0 150 25 8.3 1.5 SAS off 20 0.7 0 27.4 55 0 150 25 0 1.5 Failure mode Loaded 20 0.7 683 137 220 178 150 25 8.3 6 PETS Loaded 40 0.7 683 137 220 178 150 25 8.3 6 breakdown PETS breakdown 40 0.7 683 137 55 0 150 25 8.3 1.5 SAS off 40 0.7 0 27.4 55 0 150 25 0 1.5 Loaded 40 0.7 683 137 220 178 150 25 8.3 6 8 * EDMS# 1332627

  9. Preparation phase Scope: Verification of experimental inputs 1. Power measurement 2. Air speed measurement 3. Water flow meter 4. Water valves 9

  10. Experiment 10

  11. Experiment 20/02/14 24/02/14 25/02/14 DB and MB Zero position Zero position Zero position DBQ#1 every 1 o C Power-up DBQ Power-up DBQ Power-up DBQ DB and MB PETS#1 and AS#5 every 1 o C Unloaded conditions Unloaded conditions Unloaded conditions DB and MB AS#5 every 1 o C Loaded conditions Loaded conditions Loaded conditions DB and MB 11

  12. Results Water only Unloaded Loaded Temperature fluctuation: ± 0.2 o C 12 Temperature evolution (Zero - Unloaded - Loaded conditions)

  13. Results Components’ temperatures in steady -state ( o C) DBQ only Unloaded Loaded Experiment Simulation Diff. Experiment Simulation Diff. Experiment Simulation Diff. SAS#1 23.7 24.5 0.8 29.5 31.9 -2.4 29.0 30.7 -1.7 SAS#2 24.3 24.5 0.2 32.2 29.7 2.5 31.5 29.3 2.2 SAS#3 24.4 24.5 0.1 32.2 31.8 0.4 31.5 31.2 0.3 SAS#4 24.2 24.4 0.2 32.2 29.2 3.0 31.5 29.0 2.5 PETSu#1 22.7 23.2 0.5 25.9 29.8 -3.9 26.4 27.6 -1.2 PETSu#2 23.2 23.2 0.0 29.4 32.4 -3.0 30.1 29.3 0.8 DBQ#1 37.6 39.3 1.7 34.4 32.2 2.2 33.2 31.8 1.4 DBQ#2 36.1 38.4 2.3 33.6 33.9 -0.3 31.8 33.6 -1.8 13

  14. Results Thermal time constants Component Time constant τ (min) 40 SAS#1 5.16 𝑛𝑏𝑦 − 𝑈 0 𝑓 −𝑢 𝜐 𝑈 = 𝑈 SAS#2 5.30 SAS#3 5.05 35 SAS#4 5.08 AS Load 1 1.86 30 AS Load 2 2.00 ΔΤ 62.3% of ΔΤ AS Load 3 1.90 AS Load 4 1.80 25 PETSu#1 16.19 PETSu#2 18.83 20 WG 18.61 τ 0 10 20 30 40 RFN Loads 1.80 14

  15. Theoretical analysis T amb Q air Q     Q m c ( T T ) water p water , out water , in    Q water Q h ( T T ) A T water, out air comp amb T water, in Δ T water 15

  16. Theoretical analysis T water,out T water,in Δ T Q water T amb T comp Q air Q tot F F measured ( o C) ( o C) ( o C) ( o C) ( o C) (W) (W) (W) (m3/h) (m3/h) SAS1 24.12 30.02 5.90 744 20.00 29.16 73 817 0.108 SAS2 24.44 32.12 7.69 720 20.00 32.18 97 817 0.081 SAS3 25.05 35.01 9.96 701 20.00 34.53 116 817 0.061 SAS4 25.12 33.34 8.22 714 20.00 32.94 103 817 0.075 SAS total 0.324 PETS 24.63 29.37 4.74 267 20.00 27.79 153 420 0.048 Total 0.373 0.311 • One flow meter measures the total flow • Flow at each cooling channel (4 SAS and PETS) is not known Flow meter accuracy: ± 2% measured value 16

  17. Theoretical analysis  Power and water separately in MB and DB MB only T water,out T water,in Δ T Q water T amb T comp Q air Q tot F F measured ( o C) ( o C) ( o C) ( o C) ( o C) (W) (W) (W) (m3/h) (m3/h) SAS1 24.07 34.95 10.87 744 20.00 29.16 73 817 0.059 SAS2 24.67 35.02 10.35 720 20.00 32.18 97 817 0.060 SAS3 25.19 35.02 9.82 701 20.00 34.53 116 817 0.061 SAS4 25.23 35.22 9.99 714 20.00 32.94 103 817 0.061 SAS total 0.241 0.257 DB only T water,out T water,in Δ T Q water T amb T comp Q air Q tot F F measured ( o C) ( o C) ( o C) (W) ( o C) ( o C) (W) (W) (m3/h) (m3/h) PETS 24.54 29.45 4.91 219 20.00 30.19 201 420 0.038 0.039 17

  18. Conclusions • CLIC nominal operation mode was simulated in the CLIC module @ 20 o C. • Temperature and displacement were measured during steady states and transients. • The experimental results have been comparatively assessed to: 1. The results of the FEA simulator 2. Theoretical heat transfer calculations • The FEA simulator predicts effectively the experimental temperature response due to power, water flow and ambient conditions. • The theoretical calculations match well to the experimental data. • The FEA simulator is under constant improvement and the results show gradual convergence to experimental measurements. 18

  19. Future work In order to improve both theoretical analysis and FEA performance the following steps will be taken: 1. Enhancement of the measured water flow accuracy by installing one flow meter to each cooling circuit (4 SAS and PETS) 2. Further investigation of FEA simulator with emphasis on: • Contacts • Boundary conditions • Cooling channel simulation using computational fluid dynamics Continue the duty cycle tests 1. Nominal operation mode @ 40 o C 2. Failure modes 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend