introduction to supersymmetry unreasonable effectiveness
play

Introduction to Supersymmetry Unreasonable effectiveness of the SM - PowerPoint PPT Presentation

Introduction to Supersymmetry Unreasonable effectiveness of the SM L Yukawa = y t 2 H 0 t L t R + h.c. H 0 = H 0 + h 0 = v + h 0 m t = y t v 2 t , t L R 0 0 h h Figure 1: The top loop contribution to the Higgs mass


  1. Introduction to Supersymmetry

  2. Unreasonable effectiveness of the SM L Yukawa = − y t 2 H 0 t L t R + h.c. √ H 0 = � H 0 � + h 0 = v + h 0 m t = y t v √ 2 t , t L R 0 0 h h Figure 1: The top loop contribution to the Higgs mass term.

  3. � � � � � � d 4 k − iy ∗ − iy t − iδm 2 i i � h | top = ( − 1) N c (2 π ) 4 Tr √ √ t k − m t k − m t 2 2 k 2 + m 2 d 4 k − 2 N c | y t | 2 � = t (2 π ) 4 ( k 2 − m 2 t ) 2 k 0 → ik 4 , k 2 → − k 2 E � Λ 2 iN c | y t | 2 k 2 E ( k 2 E − m 2 t ) − iδm 2 dk 2 h | top = E ( k 2 E + m 2 8 π 2 0 t ) 2 x = k 2 E + m 2 t � Λ 2 − N c | y t | 2 � 1 − 3 m 2 + 2 m 4 � δm 2 h | top = t dx t t m 2 8 π 2 x 2 x � Λ 2 − 3 m 2 � Λ 2 + m 2 � � − N c | y t | 2 = t ln + . . . t 8 π 2 m 2 t

  4. 2 ( h 0 ) 2 ( | φ L | 2 + | φ R | 2 ) − h 0 ( µ L | φ L | 2 + µ R | φ R | 2 ) − λ L scalar = L | φ L | 2 − m 2 − m 2 R | φ R | 2 φ , φ R L 0 0 h h Figure 2: Scalar boson contribution to the Higgs mass term via the quartic coupling.

  5. φ , φ L R 0 0 h h Figure 3: Scalar boson contribution to the Higgs mass term via the trilinear coupling. � � d 4 k − iδm 2 � i i h | 2 = − iλN L + (2 π ) 4 k 2 − m 2 k 2 − m 2 R � � Λ 2 + m 2 � � Λ 2 + m 2 � � 2Λ 2 − m 2 δm 2 λN − m 2 h | 2 = L ln R ln + . . . . L R 16 π 2 m 2 m 2 L R �� � 2 � � 2 � d 4 k − iδm 2 i i � h | 3 = N − iµ L − iµ R + (2 π ) 4 k 2 − m 2 k 2 − m 2 L R � � Λ 2 + m 2 � � Λ 2 + m 2 � � δm 2 N µ 2 + µ 2 h | 3 = − L ln R ln + . . . . L R m 2 m 2 16 π 2 L R

  6. If N = N c and λ = | y t | 2 then Λ 2 cancels If m t = m L = m R and µ 2 L = µ 2 R = 2 λm 2 t log Λ are canceled as well SUSY will guarantee these relations

  7. Coleman-Mandula

  8. Golfand-Lichtman

  9. Haag-Lopuszanski-Sohnius

  10. SUSY algebra { Q α , Q † α } = 2 σ µ α P µ , ˙ α ˙ αα = (1 , − σ i ) σ µ (1 , σ i ) σ µ ˙ = α ˙ α � 0 � 0 � 1 � � � 1 − i 0 σ 1 = σ 2 = σ 3 = − 1 1 0 i 0 0 [ P µ , Q α ] = [ P µ , Q † α ] = 0 ˙ [ Q † α , R ] = − Q † [ Q α , R ] = Q α ˙ α ˙ H = P 0 = 1 4 ( Q 1 Q † 1 + Q † 1 Q 1 + Q 2 Q † 2 + Q † 2 Q 2 )

  11. ( − 1) F | boson � +1 | boson � = ( − 1) F | fermion � − 1 | fermion � = { ( − 1) F , Q α } = 0 � i | i �� i | = 1 so i � i | ( − 1) F P 0 | i � 1 i � i | ( − 1) F QQ † | i � + � i � i | ( − 1) F Q † Q | i � �� � � = 4 �� � 1 i � i | ( − 1) F QQ † | i � + � ij � i | ( − 1) F Q † | j �� j | Q | i � = 4 �� � 1 i � i | ( − 1) F QQ † | i � + � ij � j | Q | i �� i | ( − 1) F Q † | j � = 4 �� � 1 i � i | ( − 1) F QQ † | i � + � j � j | Q ( − 1) F Q † | j � = 4 �� � 1 i � i | ( − 1) F QQ † | i � − � j � j | ( − 1) F QQ † | j � = 4 = 0 .

  12. SUSY: Q α | 0 � = 0 implies that the vacuum energy vanishes � 0 | H | 0 � = 0 SUSY breaking: Q α | 0 � � = 0 and the vacuum energy is positive � 0 | H | 0 � � = 0

  13. sdfasd V V (b) (a) φ φ (d) (c) V V φ φ sdf

  14. SUSY representations massive particle rest frame: p µ = ( m,� 0). { Q α , Q † α } = 2 m δ α ˙ α ˙ { Q α , Q β } = 0 { Q † α , Q † β } = 0 ˙ ˙ Clifford vacuum: | Ω s � = Q 1 Q 2 | m, s ′ , s ′ 3 � , Q 1 | Ω s � = Q 2 | Ω s � = 0 massive multiplet: | Ω s � Q † 1 | Ω s � , Q † 2 | Ω s � Q † 1 Q † 2 | Ω s �

  15. massive “chiral” multiplet: state s 3 | Ω 0 � 0 Q † 1 | Ω 0 � , Q † ± 1 2 | Ω 0 � 2 Q † 1 Q † 2 | Ω 0 � 0 massive vector multiplet: state s 3 ± 1 | Ω 1 2 � 2 Q † 2 � , Q † 1 | Ω 1 2 | Ω 1 2 � 0 , 1 , 0 , − 1 Q † 1 Q † ± 1 2 | Ω 1 2 � 2

  16. Massless particles frame: p µ = ( E, 0 , 0 , − E ) { Q 1 , Q † 1 } = 4 E { Q 2 , Q † 2 } = 0 { Q α , Q β } = 0 { Q † α , Q † β } = 0 ˙ ˙ Clifford vacuum: | Ω λ � = Q 1 | E, λ ′ � , Q 1 | Ω λ � = 0 � Ω λ | Q 2 Q † 2 | Ω λ � + � Ω λ | Q † 2 Q 2 | Ω λ � = 0 � Ω λ | Q 2 Q † 2 | Ω λ � = 0

  17. massless supermultiplet state helicity | Ω λ � λ Q † λ + 1 1 | Ω λ � 2 CPT invariance requires: state helicity − λ − 1 | Ω − λ − 1 2 � 2 Q † 1 | Ω − λ − 1 2 � − λ

  18. massless chiral multiplet state helicity | Ω 0 � 0 Q † 1 1 | Ω 0 � 2 include CPT conjugate states: state helicity − 1 | Ω − 1 2 � 2 Q † 1 | Ω − 1 2 � 0

  19. massless vector multiplet state helicity 1 | Ω 1 2 � 2 Q † 1 | Ω 1 2 � 1 and its CPT conjugate: state helicity | Ω − 1 � − 1 Q † − 1 1 | Ω − 1 � 2

  20. Superpartners fermion ↔ sfermion ↔ quark squark ↔ gauge boson gaugino gluon ↔ gluino

  21. Extended SUSY α , Q † 2 σ µ { Q a α P µ δ a αb } = ˙ α ˙ b { Q a α , Q b β } = 0 { Q † αa , Q † βb } = 0 ˙ ˙ where a, b = 1 , . . . , N U ( N ) R R-symmetry massless multiplets: p µ = ( E, 0 , 0 , − E ) 1 , Q † { Q a 4 Eδ a 1 b } = b , 2 , Q † { Q a 2 b } = 0 .

  22. general massless multiplet state helicity degeneracy | Ω λ � λ 1 Q † λ + 1 1 a | Ω λ � N 2 Q † 1 a Q † 1 b | Ω λ � λ + 1 N ( N − 1) / 2 . . . . . . . . . Q † 11 Q † 12 . . . Q † 1 N | Ω λ � λ + N / 2 1

  23. N = 2 massless vector multiplet state helicity degeneracy | Ω − 1 � − 1 1 Q † | Ω − 1 � − 1 2 2 Q † Q † | Ω − 1 � 0 1 with the addition of the CPT conjugate: state helicity degeneracy | Ω 0 � 0 1 Q † | Ω 0 � 1 2 2 Q † Q † | Ω 0 � 1 1 built from one N = 1 vector multiplet and one N = 1 chiral multiplet.

  24. N = 2 Hypermultiplet state helicity degeneracy − 1 | Ω − 1 2 � 1 χ α 2 Q † | Ω − 1 2 � 0 2 φ Q † Q † | Ω − 1 1 ψ † ˙ α 2 � 1 2 gauge-invariant mass term: ψ α χ α N = 2 is vector-like

  25. N = 3 massless supermultiplet state helicity degeneracy | Ω − 1 � − 1 1 Q † | Ω − 1 � − 1 3 2 Q † Q † | Ω − 1 � 0 3 Q † Q † Q † | Ω − 1 � 1 1 2 plus CPT conjugate state helicity degeneracy − 1 | Ω − 1 2 � 1 2 Q † | Ω − 1 2 � 0 3 1 Q † Q † | Ω − 1 2 � 3 2 Q † Q † Q † | Ω − 1 2 � 1 1 N = 3 is vector-like

  26. N = 4 massless vector supermultiplet state helicity R | Ω − 1 � − 1 1 Q † | Ω − 1 � − 1 4 2 Q † Q † | Ω − 1 � 0 6 Q † Q † Q † | Ω − 1 � 1 4 2 Q † Q † Q † Q † | Ω − 1 � 1 1 vector-like theory

  27. Massive Supermultiplets α , Q † { Q a α δ a αb } = 2 m δ α ˙ ˙ b state spin | Ω s � s Q † s + 1 αa | Ω s � ˙ 2 Q † αa Q † βb | Ω s � s + 1 ˙ ˙ . . . Q † 11 Q † 21 Q † 12 Q † 22 . . . Q † 1 N Q † 2 N | Ω λ � s

  28. N = 2 massive supermultiplet state ( d R , 2 j + 1) | Ω 0 � (1 , 1) Q † | Ω 0 � (2 , 2) Q † Q † | Ω 0 � (3 , 1) + (1 , 3) Q † Q † Q † | Ω 0 � (2 , 2) Q † Q † Q † Q † | Ω 0 � (1 , 1) 16 states: five of spin 0, four of spin 1 2 , and one of spin 1.

  29. N = 4 massive supermultiplet state ( R , 2 j + 1) | Ω 0 � ( 1 , 1) Q † | Ω 0 � ( 4 , 2) Q † Q † | Ω 0 � ( 10 , 1) + ( 6 , 3) Q † Q † Q † | Ω 0 � ( 20 , 2) + ( 4 , 4) Q † Q † Q † Q † | Ω 0 � ( 20 ′ , 1) + ( 15 , 3) + ( 1 , 5) Q † Q † Q † Q † Q † | Ω 0 � ( 20 , 2) + ( 4 , 4) Q † Q † Q † Q † Q † Q † | Ω 0 � ( 10 , 1) + ( 6 , 3) Q † Q † Q † Q † Q † Q † Q † | Ω 0 � ( 4 , 2) Q † Q † Q † Q † Q † Q † Q † Q † | Ω 0 � ( 1 , 1) which contains 256 states, including eight spin 3 2 states and one spin 2 state

  30. Central Charges α , Q † 2 σ µ { Q a α P µ δ a αb } = √ α ˙ ˙ b { Q a α , Q b 2 ǫ αβ Z ab β } = 2 √ { Q † αa , Q † β Z ∗ βb } = 2 2 ǫ ˙ α ˙ ˙ ˙ ab where ǫ = iσ 2 for N = 2 α , Q † 2 σ µ { Q a α P µ δ a αb } = √ ˙ α ˙ b { Q a α , Q b 2 ǫ αβ ǫ ab Z β } = 2 √ { Q † αa , Q † βb } = 2 2 ǫ ˙ β ǫ ab Z α ˙ ˙ ˙

  31. Defining � � † � � 1 Q 1 Q 2 A α = α + ǫ αβ β 2 � � † � � 1 Q 1 Q 2 α − ǫ αβ B α = β 2 reduces the algebra to √ { A α , A † β } = δ αβ ( M + 2 Z ) √ { B α , B † β } δ αβ ( M − = 2 Z ) √ � M, Z | B α B † α | M, Z � + � M, Z | B † α B α | M, Z � = ( M − 2 Z ) , √ M ≥ 2 Z √ for M = 2 Z (short multiplets): B α produces states of zero norm √ M > 2 Z (long multiplets)

  32. short (BPS) multiplet: state 2 j + 1 | Ω 0 � 1 A † | Ω 0 � 2 ( A † ) 2 | Ω 0 � 1 state 2 j + 1 | Ω 1 2 � 2 A † | Ω 1 2 � 1 + 3 ( A † ) 2 | Ω 1 2 � 2 short multiplet has 8 states as opposed to 32 states for the corresponding long multiplet BPS state: √ M = 2 Z is exact

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend