introduction to numerical micromagnetism application to
play

Introduction to Numerical Micromagnetism. Application to Mesoscopic - PowerPoint PPT Presentation

Introduction to Numerical Micromagnetism. Application to Mesoscopic Magnetic Systems Liliana Buda-Prejbeanu CEA / DRFMC / SPINTEC Grenoble, France Jean-Christophe Toussaint CNRS Laboratoire Louis Nel Grenoble, France Summer School


  1. Introduction to Numerical Micromagnetism. Application to Mesoscopic Magnetic Systems Liliana Buda-Prejbeanu CEA / DRFMC / SPINTEC Grenoble, France Jean-Christophe Toussaint CNRS – Laboratoire Louis Néel Grenoble, France Summer School Magnetism of Nanostructured Systems and Hybrid Structures Bra ş ov 2003

  2. Outline Micromagnetics – theoretical background - hypothesis & limits - total free energy minimization (variational principle) - static and dynamic equations Micromagnetics – overview of the numerical implementation - current state of the art - finite difference approximation (fields & energies) - errors & accuracy & validation Application for mesoscopic ferromagnetic elements - circular Co dots - self-assembled epitaxial submicron Fe dots References

  3. Length Scale Co (hcp) L, l, e <1 µm magnetic device ~ 4 Å Quantum Mechanics Micromagnetism Bulk Atomic nanoscopic mesoscopic macroscopic scale scale scale scale 10 µm 1 Å 1 Å 1 nm 1 nm 10 nm 10 nm 100 nm 100 nm 1 µm 1 µm 10 µm bulk individual nanoparticules thin films micrometric spins clusters objects sub-microns objects ultra-thin films

  4. Experimental Scale Macroscopic studies Microscopic studies Hysteresis curves Local imaging MFM, Lorentz microscopy,… r - spatial resolution limited (>20 nm) Mean values of the magnetization M - several possible configurations MOKE, SQUID,... i Vellekoop et al., JMMM. 190, 148 (1998).

  5. Hypothesis 1907 P. Weiss / magnetic domains 1963 - W. F. Brown Jr. 1935 Landau-Lifshiz / domain walls Classical theory of continuous ferromagnetic material - smooth spatial variation of the magnetization vector Continuous functions (space & time) Individual spins r M r ( r , t ) - magnetization r H r ( r , t ) - fields r r [ ] ( ) E m r , t - energies ≡ Magnetization constant amplitude vector r r r r = M ( r , t ) M m ( r , t ) s r r = m ( r , t ) 1 Thermal fluctuations neglected Continuous material A ( T ), M ( T ), K ( T ) ex s u i J. F. Brown , Jr. : Micromagnetics, J. Wiley and Sons, New York (1963)

  6. Total Free Energy (Gibb’s free energy) ( ) r Exchange interaction ∫ r ∇ 2 A m dV - magnetic order (T<T c ) ( QM) ex - parallels spins V next neighbors [ ] Magneto-crystalline anisotropy ∫ r r ( ) − ⋅ 2 K 1 1 u m dV - the crystal symmetry axis K - easy direction V local interaction [ ] r ∫ r Zeeman coupling − ⋅ µ M m H dV 0 s app - external applied field - magnetization rotation V local interaction Magnetostatic interaction [ ] r 1 µ ∫ r r ( ) − ⋅ - Maxwell’s equations M m H m dV 0 s dem 2 - magnetic charges distribution V - magnetic domains formation long range interaction Others contributions : surface coupling, ….

  7. Micromagnetic equations m ( r ) magnetization distribution minima r { r r r r } ( ) = ∈ = m m r r V , m 1 energy total free energy functional Space of configurations r r [ ] ( ) dV ∫ = ε E m m V magnetic stable state = minimum of the total free energy functional r r r → + δ m m m r [ ] δ = E m 0 r ⇐ variational principle = m 1 2 r [ ] δ > r r E m 0 2 ⋅ δ = m m 0

  8. Micromagnetic equations – static equilibrium equations r ( ) r r r ∂   m r r ∫ ∫ δ = − × ⋅ δ θ + × ⋅ δ θ   E µ M m H dV 2 A m dS 0 s eff ex ∂  n  V S r r r δ = θ δ × m m r effective field n r r δ = − δ ⋅ ∫ E µ M m H dV r 0 s eff m V S r r r 2 A 2 K r r r r r ( ) V = ∆ + ⋅ + + + H ex m 1 u m u H H C m eff K K app D µ M µ M 0 s 0 s Brown’s equations r ∂ m r = ∈ [ ] ( ) 0 , r S r r r r r × = ∀ ∈ ∂ m H r 0 r V n eff r r ∂ ∂ m m r = ∈ A A , r S 1 2 ∂ ∂ ex , 1 n ex , 2 n A. Hubert, R. Schäfer : Magnetic Domains (p. 149) i J. Miltat in Applied Magnetism (p. 221)

  9. Micromagnetic equations m ( r, t ) { } r r r r r ( ) = ∈ ≥ = space & time dependence → m m r , t r V , t 0 , m 1 energy 1 2 Space of configurations magnetization trajectory between two magnetic states

  10. Micromagnetic equations - dynamics Landau-Lifshitz-Gilbert Equation (LLG) precession relaxation r [ ] ∂ r r ( ) ( ) m r r r ( ) + α = − γ × − αγ × × 1 m µ H m m µ H 2 ∂ 0 eff 0 eff t H H m m g e γ = γ = × × γ = > µ g 1 . 105 10 m /( As ) 0 5 γ = gyromagnetic ratio 0 0 2 m e ≅ g 2 g = Landé factor α ≅ ÷ 0 . 001 1 . 0 α = damping parameter

  11. Magnetostatic Equations r r = − ∇ φ Scalar potential formalism: H D r r ( ) ( ) ∆ φ = − ρ r r m r r r ( ) ( ) r ∈ S φ = φ r r 3D int ext r r r r [ ] ( ) ( ) r ⋅ ∇ φ − φ = σ n r r r ∈ S int ext m r r φ → → ∞ ( r ) 0 , r r r r 1 r r & ∇ = − = G ( r ) Green’s function formalism : G ( r ) r r π 3 π 4 r 4 r r r r r r r r r ( ) ( ) ( ) ( ) φ = ρ − + σ − ∈ ℜ ∫ ∫∫ ( r ) r ' G r r ' dV ' r ' G r r ' dS ' r 3 m m V S r r r r r r r r r r ( ) ( ) = − ∇ − ρ − ∇ − σ ∫ ∫∫ H ( r ) G ( r r ' ) r ' dV ' G ( r r ' ) r ' dS ' D m m V S i J. D. Jackson : Classical electrodynamics , New York (1962)

  12. General Algorithm r r r { ( ) } Defining the problem m r , t , K , A , M , H -geometry description 0 ex s appl -material parameters -initial conditions r (time & space) r r r ⋅ r ∂ ∂ = ρ = − ∇ ⋅ σ = n M , m n 0 M , r r r r r State characterization = + + + H H H H H -magnetic charges eff app D ex k -magnetostatic field ε = ε + ε + ε + ε t → t+ δ t -fields & energy terms H D ex k r ∂ r [ r ] ( ) ( ) m r r r ( ) + α = − γ × − αγ × × 1 m µ H m m µ H 2 LLG time integration ∂ 0 eff 0 eff t - amplitude conservation r false r × ≤ ε max Check equilibrium criteria m H M rr eff s true Stable state- numerical solution r { } m , E eq eq

  13. Solution static & dynamic equations r ← = � non-linear m 1 Second order r integro-differential equations � non-local ← H D ← ∂ , ∂ � coupled partial differential 2 analytical treatment - macrospin approximation - Bloch domain wall in bulk - by linearisation - near the saturation limit - nucleation and switching of domains - ferromagnetic resonance numerical treatment - powerful and efficient tools (if some rules are respected! )

  14. Current State of the Art Finite difference Finite element method approximation (FDA) (FEM / BEM) -regular mesh -irregular meshes -restrictive geometry -adaptive mesh refinement W.F. Brown Jr (1965) Schabes et al., (1988) Fredkin & Koehler Berkov et al. Fidler & Schrefl Bertram et al. Hertel & Kronmuller Donahue et al. Ramstöck et al. Miltat et al. ……. Nakatani et al. Toussaint et al. Scheinfein et al. J. -G. Zhu et al………….

  15. Finite Difference Approximation (FDA) Numerical discretisation discretisation Numerical { } r r r { } r r r r r ( ) = = = m m i 1 .. N , m 1 = ∈ = m m r r V , m 1 i i { } r r { } r r r r ( ) = = H H i 1 .. N = ∈ H H r r V eff eff , i eff eff N – total number of mesh nodes 3D 2D -orthorhombic cells -infinite prisms : dots, wires, platelets, … : e.g. thin films

  16. Finite Difference Aproximation (FDA) [ ] r r r r r r [ ] ( ) ( ( ) )   ∇ + − ⋅ − A m r K 1 u m r 2 2   r ex 1 K [ ] = ∫ E m dV   [ ] [ ] r r 1 r r r r r r r ( ) ( ) ( ) ( ( ) ) − ⋅ − µ ⋅ µ M m r H r M m r H m r   V   0 s app 2 0 s dem magnetic r r r 2 A 2 K r r r r ( ) charges = ∆ + ⋅ + + H m u m u H H ex 1 ( ) r r eff µ M µ M K K H D ρ = − ∇ ⋅ M s m 0 s 0 s m r ⋅ r ( ) σ = M s m n m Taylor expansion ∂ ∂ 2 m 1 m ( ) ( ) ( ) ( ) + = + + 2 + 3 m i 1 , j m i , j i , j h i , j h O ( h ) x x x ∂ ∂ 2 x 2 x 2D ∂ ∂ 2 m 1 m ( ) ( ) ( ) ( ) − = − + + 2 3 m i 1 , j m i , j i , j h i , j h O ( h ) ∂ x ∂ x x 2 x 2 x ( ) ( ) ∂ + − − m m i 1 , j m i 1 , j ( ) ≅ i , j ∂ x 2 h x ( ) ( ) ( ) ∂ + − + − 2 m m i 1 , j 2 m i , j m i 1 , j ( ) ≅ i , j ∂ 2 2 x h x The accuracy is dependent on the Taylor expansion order ! i M. Labrune, J. Miltat, JMMM 151 , 231 (1995).

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend