introduction to multivariate public
play

Introduction to Multivariate Public Key Cryptography Geovandro - PowerPoint PPT Presentation

Introduction to Multivariate Public Key Cryptography Geovandro Carlos C. F. Pereira PhD advisor: Prof. Dr. Paulo S. L. M. Barreto LARC - Computer Architecture and Networking Lab Department of Computer Engineering and Digital Systems Escola


  1. Security โ€ข Most of the schemes do not use exactly random maps. Many systems have the structure โ€ข ๐‘„(๐‘ฆ 1 , โ‹ฏ , ๐‘ฆ ๐‘œ ) = ๐‘€ 1 โˆ˜ ๐บ โˆ˜ ๐‘€ 2 (๐‘ฆ 1 , โ‹ฏ , ๐‘ฆ ๐‘œ ) ๐บ is a quadratic map with certain structure. (central map) โ€ข This structure enables computing ๐บ โˆ’1 easily. โ€ข Slide 37

  2. Security โ€ข Most of the schemes do not use exactly random maps. Many systems have the structure โ€ข ๐‘„(๐‘ฆ 1 , โ‹ฏ , ๐‘ฆ ๐‘œ ) = ๐‘€ 1 โˆ˜ ๐บ โˆ˜ ๐‘€ 2 (๐‘ฆ 1 , โ‹ฏ , ๐‘ฆ ๐‘œ ) ๐บ is a quadratic map with certain structure. (central map) โ€ข This structure enables computing ๐บ โˆ’1 easily. โ€ข ๐‘€ 1 and ๐‘€ 2 are full-rank linear maps used to hide ๐บ . โ€ข Slide 38

  3. Security โ€ข MQ-Problem : Given a set of ๐‘› quadratic polynomials in ๐‘œ variables x = (๐‘ฆ 1 , โ‹ฏ , ๐‘ฆ ๐‘œ ) , solve the system: ๐‘ž 1 ๐‘ฆ = โ‹ฏ = ๐‘ž ๐‘› ๐‘ฆ = 0 Slide 39

  4. Security โ€ข MQ-Problem : Given a set of ๐‘› quadratic polynomials in ๐‘œ variables x = (๐‘ฆ 1 , โ‹ฏ , ๐‘ฆ ๐‘œ ) , solve the system: ๐‘ž 1 ๐‘ฆ = โ‹ฏ = ๐‘ž ๐‘› ๐‘ฆ = 0 1 , ๐บ 2 : ๐ฟ ๐‘œ โŸถ ๐ฟ ๐‘› . IP-Problem : Given two polynomial maps ๐บ โ€ข The problem is to look for two linear transformations ๐‘€ 1 and ๐‘€ 2 (if they exist) s.t.: 1 (๐‘ฆ 1 , โ‹ฏ , ๐‘ฆ ๐‘œ ) = ๐‘€ 1 โˆ˜ ๐บ โˆ˜ ๐‘€ 2 (๐‘ฆ 1 , โ‹ฏ , ๐‘ฆ ๐‘œ ) ๐บ Slide 40

  5. Multivariate Quadratic Construction MQ system with ๐‘› equations in ๐‘œ vars, all coefs. in ๐”พ ๐‘Ÿ : โ€ข Polynomial notation: ๐‘™ ๐‘ฆ ๐‘— ๐‘ฆ ๐‘˜ ๐‘™ ๐‘ฆ ๐‘— + ๐‘‘ (๐‘™) ๐‘ž ๐‘™ ๐‘ฆ 1 , โ€ฆ , ๐‘ฆ ๐‘œ โ‰” ๐‘„ + ๐‘€ ๐‘— ๐‘—๐‘˜ ๐‘—,๐‘˜ ๐‘— Vector notation: ๐‘ž ๐‘™ ๐‘ฆ 1 , โ€ฆ , ๐‘ฆ ๐‘œ = ๐‘ฆ๐‘„ ๐‘™ ๐‘ฆ ๐‘ˆ + ๐‘€ (๐‘™) ๐‘ฆ + ๐‘‘ (๐‘™) Slide 41

  6. (Pure) Quadratic Map ๐’ฌ ๐‘ฆ = โ„Ž โ‡” ๐‘ฆ ๐‘„ (๐‘™) ๐‘ฆ ๐‘ˆ = โ„Ž ๐‘™ (๐‘™ = 1, โ€ฆ , ๐‘›) ๐‘ฆ ๐‘ˆ โ„Ž ๐‘™ ๐‘ฆ ๐‘„ (๐‘™) = Slide 42

  7. Matsumoto-Imai Cryptosystem Previously, many unsuccesfull attempts to construct an โ€ข encryption scheme. Small number of variables. โ€ข Huge key sizes. โ€ข In 1988, Matsumoto and Imai adopted a โ€œBigโ€ Field in their โ€ข C* construction. Slide 43

  8. Matsumoto-Imai Cryptosystem ๐‘™ is a small finite field with ๐‘™ = ๐‘Ÿ . โ€ข Slide 44

  9. Matsumoto-Imai Cryptosystem ๐‘™ is a small finite field with ๐‘™ = ๐‘Ÿ . โ€ข = ๐‘™ ๐‘ฆ /(๐‘•(๐‘ฆ)) a degree ๐‘œ extension of ๐‘™ . ๐ฟ โ€ข Slide 45

  10. Matsumoto-Imai Cryptosystem ๐‘™ is a small finite field with ๐‘™ = ๐‘Ÿ . โ€ข = ๐‘™ ๐‘ฆ /(๐‘•(๐‘ฆ)) a degree ๐‘œ extension of ๐‘™ . ๐ฟ โ€ข โ†’ ๐‘™ ๐‘œ and ๐œš โˆ’1 : ๐‘™ ๐‘œ โ†’ ๐ฟ . The linear map ๐œš: ๐ฟ โ€ข ๐œš ๐‘ 0 + ๐‘ 1 ๐‘ฆ + โ‹ฏ + ๐‘ ๐‘œโˆ’1 ๐‘ฆ ๐‘œโˆ’1 = (๐‘ 0 , ๐‘ 1 , โ‹ฏ , ๐‘ ๐‘œโˆ’1 ) Slide 46

  11. Matsumoto-Imai Cryptosystem ๐‘™ is a small finite field with ๐‘™ = ๐‘Ÿ . โ€ข = ๐‘™ ๐‘ฆ /(๐‘•(๐‘ฆ)) a degree ๐‘œ extension of ๐‘™ . ๐ฟ โ€ข โ†’ ๐‘™ ๐‘œ and ๐œš โˆ’1 : ๐‘™ ๐‘œ โ†’ ๐ฟ . The linear map ๐œš: ๐ฟ โ€ข ๐œš ๐‘ 0 + ๐‘ 1 ๐‘ฆ + โ‹ฏ + ๐‘ ๐‘œโˆ’1 ๐‘ฆ ๐‘œโˆ’1 = (๐‘ 0 , ๐‘ 1 , โ‹ฏ , ๐‘ ๐‘œโˆ’1 ) over ๐ฟ : Build a map ๐บ โ€ข = ๐‘€ 1 โˆ˜ ๐œš โˆ˜ ๐บ โˆ˜ ๐œš โˆ’1 โˆ˜ ๐‘€ 2 ๐บ where the ๐‘€ ๐‘— are randomly chosen invertible maps over ๐‘™ ๐‘œ Slide 47

  12. Matsumoto-Imai Cryptosystem ๐‘™ is a small finite field with ๐‘™ = ๐‘Ÿ . โ€ข = ๐‘™ ๐‘ฆ /(๐‘•(๐‘ฆ)) a degree ๐‘œ extension of ๐‘™ . ๐ฟ โ€ข โ†’ ๐‘™ ๐‘œ and ๐œš โˆ’1 : ๐‘™ ๐‘œ โ†’ ๐ฟ . The linear map ๐œš: ๐ฟ โ€ข ๐œš ๐‘ 0 + ๐‘ 1 ๐‘ฆ + โ‹ฏ + ๐‘ ๐‘œโˆ’1 ๐‘ฆ ๐‘œโˆ’1 = (๐‘ 0 , ๐‘ 1 , โ‹ฏ , ๐‘ ๐‘œโˆ’1 ) over ๐ฟ : Build a map ๐บ โ€ข = ๐‘€ 1 โˆ˜ ๐œš โˆ˜ ๐บ โˆ˜ ๐œš โˆ’1 โˆ˜ ๐‘€ 2 ๐บ where the ๐‘€ ๐‘— are randomly chosen invertible maps over ๐‘™ ๐‘œ is related to the IP Problem Inversion of ๐บ โ€ข Slide 48

  13. Matsumoto-Imai Cryptosystem The map ๐บ adopted was: โ€ข โŸถ ๐ฟ ๐บ โˆถ ๐ฟ ๐‘Œ โŸผ ๐‘Œ ๐‘Ÿ ๐œ„ +1 Slide 49

  14. Matsumoto-Imai Cryptosystem The map ๐บ adopted was: โ€ข โŸถ ๐ฟ ๐บ โˆถ ๐ฟ ๐‘Œ โŸผ ๐‘Œ ๐‘Ÿ ๐œ„ +1 โ€ข Let ๐‘ฆ 1 , โ‹ฏ , ๐‘ฆ ๐‘œ = ๐œš โˆ˜ ๐บ โˆ˜ ๐œš โˆ’1 ๐‘ฆ 1 , โ‹ฏ , ๐‘ฆ ๐‘œ = (๐บ ๐‘ฆ 1 , โ‹ฏ , ๐‘ฆ ๐‘œ , โ‹ฏ , ๐บ ๐‘› (๐‘ฆ 1 , โ‹ฏ , ๐‘ฆ ๐‘œ )) ๐บ 1 Slide 50

  15. Matsumoto-Imai Cryptosystem The map ๐บ adopted was: โ€ข โŸถ ๐ฟ ๐บ โˆถ ๐ฟ ๐‘Œ โŸผ ๐‘Œ ๐‘Ÿ ๐œ„ +1 โ€ข Let ๐‘ฆ 1 , โ‹ฏ , ๐‘ฆ ๐‘œ = ๐œš โˆ˜ ๐บ โˆ˜ ๐œš โˆ’1 ๐‘ฆ 1 , โ‹ฏ , ๐‘ฆ ๐‘œ = (๐บ ๐‘ฆ 1 , โ‹ฏ , ๐‘ฆ ๐‘œ , โ‹ฏ , ๐บ ๐‘› (๐‘ฆ 1 , โ‹ฏ , ๐‘ฆ ๐‘œ )) ๐บ 1 are quadratic polynomials because the map โ€ข ๐บ ๐‘— ๐‘Œ โŸผ ๐‘Œ ๐‘Ÿ ๐œ„ is linear (it is the Frobenius automorphism of order ๐œ„ ). Slide 51

  16. Matsumoto-Imai Cryptosystem Encryption is done by the quadratic map over ๐‘™ ๐‘œ โ€ข = ๐‘€ 1 โˆ˜ ๐œš โˆ˜ ๐บ โˆ˜ ๐œš โˆ’1 โˆ˜ ๐‘€ 2 ๐บ where ๐‘€ ๐‘— are affine maps over ๐‘™ ๐‘œ . Slide 52

  17. Matsumoto-Imai Cryptosystem Encryption is done by the quadratic map over ๐‘™ ๐‘œ โ€ข = ๐‘€ 1 โˆ˜ ๐œš โˆ˜ ๐บ โˆ˜ ๐œš โˆ’1 โˆ˜ ๐‘€ 2 ๐บ where ๐‘€ ๐‘— are affine maps over ๐‘™ ๐‘œ . โ€ข Decryption is the inverse process โˆ’1 = ๐‘€ 2 โˆ’1 โˆ˜ ๐œš โˆ˜ ๐บ โˆ’1 โˆ˜ ๐œš โˆ’1 โˆ˜ ๐‘€ 1 โˆ’1 ๐บ Slide 53

  18. Matsumoto-Imai Cryptosystem Requirement: G.C.D. ๐‘Ÿ ๐œ„ + 1, ๐‘Ÿ ๐‘œ โˆ’ 1 = 1 โ€ข โˆ’1 to ensure the invertibility of the decryption map ๐บ Slide 54

  19. Matsumoto-Imai Cryptosystem Requirement: G.C.D. ๐‘Ÿ ๐œ„ + 1, ๐‘Ÿ ๐‘œ โˆ’ 1 = 1 โ€ข โˆ’1 to ensure the invertibility of the decryption map ๐บ โ€ข ๐บ โˆ’1 ๐‘Œ = ๐‘Œ ๐‘ข , ๐‘Œ โˆˆ ๐ฟ where ๐‘ข ร— ๐‘Ÿ ๐œ„ + 1 โ‰ก 1 ๐‘›๐‘๐‘’(๐‘Ÿ ๐‘œ โˆ’ 1) . = (๐บ , โ‹ฏ , ๐บ ) โ€ข The public key includes ๐‘™ and ๐บ 1 ๐‘œ . โ€ข The private key includes ๐‘€ 1 , ๐‘€ 2 and ๐ฟ Slide 55

  20. UOV Signature Trapdoor to invert ๐บ [Patarin] โ€ข Slide 56

  21. UOV Signature Trapdoor to invert ๐บ [Patarin] โ€ข โ„Ž = ๐ผ๐‘๐‘กโ„Ž(๐‘) โ€ข Slide 57

  22. UOV Signature Trapdoor to invert ๐บ [Patarin] โ€ข โ„Ž = ๐ผ๐‘๐‘กโ„Ž(๐‘) โ€ข Split vars. into 2 sets: oil variables : O โ‰” (๐‘ฆ 1 , โ‹ฏ , ๐‘ฆ ๐‘ ) โ€ข vinegar variables: ๐‘Š โ‰” (๐‘ฆ 1 โ€ฒ , โ€ฆ , ๐‘ฆ ๐‘ค โ€ฒ ) Slide 58

  23. UOV Signature Trapdoor to invert ๐บ [Patarin] โ€ข โ„Ž = ๐ผ๐‘๐‘กโ„Ž(๐‘) โ€ข Split vars. into 2 sets: oil variables : O โ‰” (๐‘ฆ 1 , โ‹ฏ , ๐‘ฆ ๐‘ ) โ€ข vinegar variables: ๐‘Š โ‰” (๐‘ฆ 1 โ€ฒ , โ€ฆ , ๐‘ฆ ๐‘ค โ€ฒ ) โ€ฒ , โ€ฆ , ๐‘ฆ ๐‘ค โ€ฒ = โ„Ž ๐‘™ = ๐‘” ๐‘™ ๐‘ฆ 1 , โ‹ฏ , x ๐‘ , ๐‘ฆ 1 ๐‘™ ๐‘ฆ ๐‘— ๐‘ฆโ€ฒ ๐‘˜ ๐‘™ ๐‘ฆโ€ฒ ๐‘— ๐‘ฆโ€ฒ ๐‘˜ ๐‘™ ๐‘ฆ ๐‘— ๐‘™ ๐‘ฆโ€ฒ ๐‘— + ๐‘‘ (๐‘™) = ๐บ ๐‘—๐‘˜ + ๐บ ๐‘—๐‘˜ + ๐‘€ ๐‘— + ๐‘€ ๐‘— ๐‘ƒร—๐‘Š ๐‘Šร—๐‘Š ๐‘ƒ ๐‘Š Slide 59

  24. UOV Signature Trapdoor to invert ๐บ [Patarin] โ€ข โ„Ž = ๐ผ๐‘๐‘กโ„Ž(๐‘) โ€ข Choose uniformly at random vinegars: ๐‘Š โ‰” (๐‘ฆ 1 โ€ฒ , โ€ฆ , ๐‘ฆ ๐‘ค โ€ฒ ) โ€ข โ€ฒ , โ€ฆ , ๐‘ฆ ๐‘ค โ€ฒ = โ„Ž ๐‘™ = ๐‘” ๐‘™ ๐‘ฆ 1 , โ‹ฏ , x ๐‘ , ๐‘ฆ 1 ๐‘™ ๐‘ฆ ๐‘— ๐‘ฆโ€ฒ ๐‘˜ ๐‘™ ๐‘ฆโ€ฒ ๐‘— ๐‘ฆโ€ฒ ๐‘˜ ๐‘™ ๐‘ฆ ๐‘— ๐‘™ ๐‘ฆโ€ฒ ๐‘— + ๐‘‘ (๐‘™) = ๐บ ๐‘—๐‘˜ + ๐บ ๐‘—๐‘˜ + ๐‘€ ๐‘— + ๐‘€ ๐‘— ๐‘ƒร—๐‘Š ๐‘Šร—๐‘Š ๐‘ƒ ๐‘Š Slide 60

  25. UOV Signature Trapdoor to invert ๐บ [Patarin] โ€ข โ„Ž = ๐ผ๐‘๐‘กโ„Ž(๐‘) โ€ข โ€ฒ Fix vinegars: ๐‘Š โ‰” ๐‘ฆ 1 โ€ฒ , โ€ฆ , ๐‘ฆ ๐‘ค โ€ข โ€ฒ , โ€ฆ , ๐‘ฆ ๐‘ค โ€ฒ = โ„Ž ๐‘™ ๐‘” ๐‘™ ๐‘ฆ 1 , โ‹ฏ , x ๐‘ , ๐‘ฆ 1 ๐‘™ ๐‘ฆ ๐‘— ๐‘ฆโ€ฒ ๐‘˜ ๐‘™ ๐‘ฆโ€ฒ ๐‘— ๐‘ฆโ€ฒ ๐‘˜ ๐‘™ ๐‘ฆ ๐‘— ๐‘™ ๐‘ฆโ€ฒ ๐‘— + ๐‘‘ (๐‘™) = ๐บ ๐‘—๐‘˜ + ๐บ ๐‘—๐‘˜ + ๐‘€ ๐‘— + ๐‘€ ๐‘— ๐‘ƒร—๐‘Š ๐‘Šร—๐‘Š ๐‘ƒ ๐‘Š This becomes an ๐‘๐‘ฆ๐‘ system of linear equations. โ€ข Slide 61

  26. UOV Signature Trapdoor to invert ๐บ [Patarin] โ€ข โ„Ž = ๐ผ๐‘๐‘กโ„Ž(๐‘) โ€ข โ€ฒ Fix vinegars: ๐‘Š โ‰” ๐‘ฆ 1 โ€ฒ , โ€ฆ , ๐‘ฆ ๐‘ค โ€ข โ€ฒ , โ€ฆ , ๐‘ฆ ๐‘ค โ€ฒ = ๐‘” ๐‘™ ๐‘ฆ 1 , โ‹ฏ , x ๐‘ , ๐‘ฆ 1 ๐‘™ ๐‘ฆ ๐‘— ๐‘ฆโ€ฒ ๐‘˜ ๐‘™ ๐‘ฆโ€ฒ ๐‘— ๐‘ฆโ€ฒ ๐‘˜ ๐‘™ ๐‘ฆ ๐‘— ๐‘™ ๐‘ฆโ€ฒ ๐‘— + ๐‘‘ (๐‘™) = ๐บ ๐‘—๐‘˜ + ๐บ ๐‘—๐‘˜ + ๐‘€ ๐‘— + ๐‘€ ๐‘— ๐‘ƒร—๐‘Š ๐‘Šร—๐‘Š ๐‘ƒ ๐‘Š This becomes an ๐‘๐‘ฆ๐‘ system of linear equations. โ€ข It has a solution with high probability (โ‰ˆ 1 โˆ’ 1/๐‘Ÿ) . โ€ข Slide 62

  27. UOV Signature Trapdoor to invert ๐บ [Patarin] โ€ข Oil variables not mixed. โ€ข Vinegar Oil variables variables ๐’š ๐Ÿ โ€ฆ ๐’š ๐’˜ โ€ฆ ๐’š ๐’ ๐’š ๐Ÿ ๐บ (๐‘™) = โ‹ฎ Vinegar variables ๐’š ๐’˜ 0 โ‹ฎ Oil variables ๐’š ๐’ Slide 63

  28. Rainbow Signature Rainbow Quadratic Map โ€ข Slide 64

  29. MQ Signatures UOV key sizes. โ€ข Public Key Scheme (KiB) 113.4 99.4 77.7 66.7 14.5 11.0 10.2 Slide 65

  30. โ€ข Technique for Key Size Reduction Slide 66

  31. MQ Signatures - Cyclic UOV Technique for reduction of UOV public keys. โ€ข Slide 67

  32. MQ Signatures - Cyclic UOV Technique for reduction of UOV public keys. โ€ข Part of the public key with short representation. โ€ข Slide 68

  33. MQ Signatures - Cyclic UOV Technique for reduction of UOV public keys. โ€ข Part of the public key with short representation. โ€ข Achieves a 6x reduction factor for 80-bit security. โ€ข Slide 69

  34. MQ Signatures - Cyclic UOV Public matrix of coefficients ๐‘ ๐‘„ ๐‘„ (1) ๐‘ ๐‘„ = โ‹ฎ ๐‘„ (2) โ‹ฎ ๐‘›๐‘ฆ l โ€ฒ ๐‘„ (๐‘›) l โ€ฒ = ๐‘œ ๐‘œ + 1 2 Slide 70

  35. MQ Signatures - Cyclic UOV Public matrix of coefficients ๐‘ ๐‘„ ๐ท ๐ถ = ๐‘ ๐‘„ = โ‹ฎ ๐‘›๐‘ฆ l โ€ฒ ๐‘›๐‘ฆ l โ€ฒ l l l = ๐‘ค ๐‘ค + 1 l โ€ฒ = ๐‘œ ๐‘œ + 1 + ๐‘›๐‘ค, 2 2 Slide 71

  36. MQ Signatures - Cyclic UOV Private matrix of coefficients ๐‘ ๐บ ๐บ 1 0 0 ๐‘ ๐บ = โ‹ฎ ๐บ 2 0 โ‹ฎ 0 ๐‘›๐‘ฆ l โ€ฒ l ๐บ ๐‘› 0 l = ๐‘ค ๐‘ค + 1 l โ€ฒ = ๐‘œ ๐‘œ + 1 + ๐‘›๐‘ค, 2 2 Slide 72

  37. MQ Signatures - Cyclic UOV Private matrix of coefficients ๐‘ ๐บ 0 ๐บ = ๐‘ ๐บ = 0 โ‹ฎ 0 ๐‘›๐‘ฆ l โ€ฒ ๐‘›๐‘ฆ l โ€ฒ l l l = ๐‘ค ๐‘ค + 1 l โ€ฒ = ๐‘œ ๐‘œ + 1 + ๐‘›๐‘ค, 2 2 Slide 73

  38. MQ Signatures - Cyclic UOV There is a linear relation between ๐ถ and ๐บ which only depends โ€ข on ๐ถ , ๐บ and ๐‘‡ [Petzoldt et. al, 2010] ๐ถ = ๐บ โˆ™ ๐ต ๐‘‰๐‘ƒ๐‘Š (S) ๐ถ ๐ท ๐‘ ๐‘„ = ๐‘ ๐‘ก = ๐‘ก ๐‘ ๐‘— . ๐‘ก ๐‘ก๐‘— , ๐‘— = ๐‘˜ ๐‘ ๐‘—๐‘˜ ๐‘— โ‰  ๐‘˜ ๐‘ก ๐‘ ๐‘— . ๐‘ก ๐‘ก๐‘˜ + ๐‘ก ๐‘ ๐‘˜ . ๐‘ก ๐‘ก๐‘— , ๐‘›๐‘ฆ l โ€ฒ l 1 โ‰ค ๐‘— โ‰ค ๐‘ค, ๐‘— โ‰ค ๐‘˜ โ‰ค ๐‘œ 1 โ‰ค ๐‘  โ‰ค ๐‘ค, ๐‘  โ‰ค ๐‘ก โ‰ค ๐‘œ ๐บ ๐‘ ๐บ = 0 ๐‘›๐‘ฆ l โ€ฒ l Slide 74

  39. MQ Signatures - Cyclic UOV By choosing ๐ต ๐‘‰๐‘ƒ๐‘Š (๐‘‡) invertible: โˆ’1 โ€ข ๐บ can be computed from ๐ถ and ๐ต ๐‘‰๐‘ƒ๐‘Š โˆ’1 ๐บ = ๐ถ โˆ™ ๐ต ๐‘‰๐‘ƒ๐‘Š Slide 75

  40. MQ Signatures - Cyclic UOV By choosing ๐ต ๐‘‰๐‘ƒ๐‘Š (๐‘‡) invertible: โˆ’1 โ€ข ๐บ can be computed from ๐ถ and ๐ต ๐‘‰๐‘ƒ๐‘Š โˆ’1 ๐บ = ๐ถ โˆ™ ๐ต ๐‘‰๐‘ƒ๐‘Š Thus, the choice of ๐ถ becomes flexible. โ€ข Slide 76

  41. MQ Signatures - Cyclic UOV By choosing ๐ต ๐‘‰๐‘ƒ๐‘Š (๐‘‡) invertible: โˆ’1 โ€ข ๐บ can be computed from ๐ถ and ๐ต ๐‘‰๐‘ƒ๐‘Š โˆ’1 ๐บ = ๐ถ โˆ™ ๐ต ๐‘‰๐‘ƒ๐‘Š Thus, the choice of ๐ถ becomes flexible. โ€ข In particular: โ€ข ๐ถ = 0 does not result in a valid F , โˆ’1 , ๐ถ = Identity blocks, reveals too much info of ๐ต ๐‘‰๐‘ƒ๐‘Š ๐ถ circulant was adopted by [Petzoldt et. al, 2010] Slide 77

  42. MQ Signatures - Cyclic UOV By choosing ๐ต ๐‘‰๐‘ƒ๐‘Š (๐‘‡) invertible: โˆ’1 โ€ข ๐บ can be computed from ๐ถ and ๐ต ๐‘‰๐‘ƒ๐‘Š โˆ’1 ๐บ = ๐ถ โˆ™ ๐ต ๐‘‰๐‘ƒ๐‘Š Thus, the choice of ๐ถ becomes flexible. โ€ข In particular: โ€ข ๐ถ = 0 does not result in a valid F , โˆ’1 , ๐ถ = Identity blocks, reveals too much info of ๐ต ๐‘‰๐‘ƒ๐‘Š ๐ถ circulant was adopted by [Petzoldt et. al, 2010] Petzoldt et. al. showed by theorem that the choice of a circulant ๐ถ provides consistent UOV signatures. Slide 78

  43. MQ Signatures - Cyclic UOV Adopting ๐ถ circulant: ๐ถ ๐ท ๐‘ ๐‘„ = โ‹ฎ ๐‘›๐‘ฆ l โ€ฒ l ๐‘›๐‘ฆ l โ€ฒ l โ‹ฏ ๐’„ = (๐‘ 1 , โ‹ฏ , ๐‘ l ) |๐‘ต ๐‘ธ | = l + ๐‘›( l โ€ฒ โˆ’ l ) Slide 79

  44. MQ Signatures - Cyclic UOV Public matrices ๐‘„ ๐‘™ ๐‘„ 1 Slide 80

  45. MQ Signatures - Cyclic UOV Public matrices ๐‘„ ๐‘™ ๐‘„ 2 Slide 81

  46. MQ Signatures - Cyclic UOV Public matrices ๐‘„ ๐‘™ ๐‘„ 3 Slide 82

  47. MQ Signatures - Cyclic UOV Public matrices ๐‘„ ๐‘™ ๐‘„ 4 Slide 83

  48. MQ Signatures - Cyclic UOV Public matrices ๐‘„ ๐‘™ โ‹ฏ Slide 84

  49. Equivalent Keys in UOV Idea: Find equivalent private keys that enables solving any โ€ข given public key system. Slide 85

  50. Equivalent Keys in UOV Idea: Find equivalent private keys that enables solving any โ€ข given public key system. A class of equivalent private keys with a simpler structure. โ€ข Slide 86

  51. Equivalent Keys in UOV Idea: Find equivalent private keys that enables solving any โ€ข given public key system. A class of equivalent private keys with a simpler structure. โ€ข Thus, private keys can be built using this short structure. โ€ข Slide 87

  52. Equivalent Keys in UOV UOV public key: โ€ข ๐‘„ (๐‘—) = ๐‘‡๐บ (๐‘—) ๐‘‡ ๐‘ˆ , 1 โ‰ค ๐‘— โ‰ค ๐‘› Slide 88

  53. Equivalent Keys in UOV UOV public key: โ€ข ๐‘„ (๐‘—) = ๐‘‡๐บ (๐‘—) ๐‘‡ ๐‘ˆ , 1 โ‰ค ๐‘— โ‰ค ๐‘› Question: Are there classes of keys ๐‘‡ โ€ฒ and ๐บโ€ฒ s.t. โ€ข ๐‘„ (๐‘—) = ๐‘‡๐บ (๐‘—) ๐‘‡ ๐‘ˆ = ๐‘‡ โ€ฒ ๐บ โ€ฒ(๐‘—) ๐‘‡ โ€ฒ๐‘ˆ , 1 โ‰ค ๐‘— โ‰ค ๐‘› where matrices ๐บ โ€ฒ(๐‘—) share with ๐บ (๐‘—) the same trapdoor structure? Slide 89

  54. Equivalent Keys in UOV Idea: Introduce a matrix ฮฉ in ๐‘„ (๐‘—) : โ€ข ๐‘„ ๐‘— = ๐‘‡ฮฉ โˆ’1 ฮฉ๐บ ๐‘— ฮฉ ๐‘ˆ ฮฉ ๐‘ˆโˆ’1 ๐‘‡ ๐‘ˆ Define ๐บ โ€ฒ ๐‘— โ‰” ฮฉ๐บ (๐‘—) ฮฉ ๐‘ˆ โ€ข Slide 90

  55. Equivalent Keys in UOV Idea: Introduce a matrix ฮฉ in ๐‘„ (๐‘—) : โ€ข ๐‘„ ๐‘— = ๐‘‡ฮฉ โˆ’1 ฮฉ๐บ ๐‘— ฮฉ ๐‘ˆ ฮฉ ๐‘ˆโˆ’1 ๐‘‡ ๐‘ˆ Define ๐บ โ€ฒ ๐‘— โ‰” ฮฉ๐บ (๐‘—) ฮฉ ๐‘ˆ โ€ข We want ฮฉ that keeps the original ๐บ structure in ๐บโ€ฒ : โ€ข ๐‘ค ๐‘› ๐‘ค ๐‘› ๐‘ค ๐‘› ๐‘ค ฮฉ 1 ฮฉ 2 ๐‘ค ๐บ ๐‘ค ๐บ 2 ๐‘ˆ 1 ๐‘ˆ ฮฉ 1 ฮฉ 3 = ฮฉ 4 ๐‘ˆ ฮฉ 3 0 ๐‘ˆ ๐บ 3 ฮฉ 2 ๐‘› ๐œ ฮฉ 4 ๐‘› ๐‘› ๐บ (๐‘—) ฮฉ ฮฉ T ๐บโ€ฒ (๐‘—) Slide 91

  56. Equivalent Keys in UOV From the previous equality we obtain: โ€ข ๐‘ˆ + ฮฉ 3 ๐บ 2 ฮฉ 4 ๐‘ˆ = 0 ๐œ = ฮฉ 3 ๐บ 1 + ฮฉ 4 ๐บ 3 ฮฉ 3 and ฮฉ 3 = 0 is a solution. ๐‘ค ๐‘› ๐‘ค ฮฉ 1 ฮฉ 2 ฮฉ = ๐‘› ฮฉ 4 0 Slide 92

  57. Equivalent Keys in UOV Thus, ๐บโ€ฒ (๐‘—) = ฮฉ๐บ (๐‘—) ฮฉ ๐‘ˆ has the same structure of ๐บ ๐‘— . โ€ข Going back to definition โ€ข ๐‘„ ๐‘— = ๐‘‡ฮฉ โˆ’1 (ฮฉ๐บ ๐‘— ฮฉ ๐‘ˆ )ฮฉ ๐‘ˆโˆ’1 ๐‘‡ ๐‘ˆ Slide 93

  58. Equivalent Keys in UOV Thus, ๐บโ€ฒ (๐‘—) = ฮฉ๐บ (๐‘—) ฮฉ ๐‘ˆ has the same structure of ๐บ ๐‘— . โ€ข Going back to definition โ€ข ๐‘„ ๐‘— = ๐‘‡ฮฉ โˆ’1 (๐บโ€ฒ (๐‘—) )ฮฉ ๐‘ˆโˆ’1 ๐‘‡ ๐‘ˆ Slide 94

  59. Equivalent Keys in UOV Thus, ๐บโ€ฒ (๐‘—) = ฮฉ๐บ (๐‘—) ฮฉ ๐‘ˆ has the same structure of ๐บ ๐‘— . โ€ข Going back to definition โ€ข ๐‘„ ๐‘— = ๐‘‡ฮฉ โˆ’1 (๐บโ€ฒ (๐‘—) )ฮฉ ๐‘ˆโˆ’1 ๐‘‡ ๐‘ˆ So, defining ๐‘‡ โ€ฒ โ‰” ๐‘‡ฮฉ โˆ’1 one finally gets: โ€ข ๐‘„ ๐‘— = ๐‘‡ โ€ฒ ๐บ โ€ฒ(๐‘—) ๐‘‡ โ€ฒ๐‘ˆ Slide 95

  60. Equivalent Keys in UOV ๐‘ค ๐‘› โˆ’1 ฮฉ 2 โˆ’1 โˆ’1 ๐‘ค ฮฉ 1 โˆ’1 ฮฉ 1 ฮฉ 2 ๐‘‡ 1 ๐‘‡ 2 ๐‘‡ โ€ฒ = ๐‘‡ฮฉ โˆ’1 = โˆ’1 ๐‘‡ 3 ฮฉ 4 โˆ’1 ๐‘‡ 4 ๐‘› 0 ฮฉ 4 ฮฉ โˆ’1 ๐‘‡ Note that ฮฉ โˆ’1 has the same structure of ฮฉ . โ€ข Slide 96

  61. Equivalent Keys in UOV โˆ’1 , it is possible to get: By choosing suitable values of ฮฉ ๐‘— โ€ข โ€ฒ = ๐ฝ ๐‘ค๐‘ฆ๐‘ค ๐‘‡ 1 โ€ฒ = 0 ๐‘ค๐‘ฆ๐‘› ๐‘‡ 2 โ€ฒ = ๐ฝ ๐‘›๐‘ฆ๐‘› ๐‘‡ 4 what implies โ€ฒ = ๐‘‡ 3 ๐‘‡ 1 โˆ’1 + ๐‘‡ 4 (๐‘‡ 4 โˆ’ ๐‘‡ 3 ๐‘‡ 1 โˆ’1 ๐‘‡ 2 ๐‘‡ 1 โˆ’1 ๐‘‡ 2 ) โˆ’1 ๐‘‡ 3 Slide 97

  62. Equivalent Keys in UOV Structure of ๐‘‡โ€ฒ : โ€ข ๐‘› ๐‘ค ๐‘› ๐‘‡ โ€ฒ = โ€ฒ ๐‘‡ 3 ๐‘ค Slide 98

  63. Equivalent Keys in UOV Structure of ๐‘‡โ€ฒ : โ€ข ๐‘› ๐‘ค ๐‘› ๐‘‡ โ€ฒ = โ€ฒ ๐‘‡ 3 ๐‘ค So, the answer is yes , there exist equivalent ๐‘‡ โ€ฒ , ๐บ โ€ฒ(๐‘—) s.t. โ€ข ๐‘‡ฮฉ โˆ’1 ๐‘ˆ = ๐‘„ ๐‘— ๐‘‡ โ€ฒ ๐บ โ€ฒ(๐‘—) (๐‘‡ โ€ฒ ) ๐‘ˆ = (๐‘‡ฮฉ โˆ’1 ) ฮฉ๐บ ๐‘— ฮฉ ๐‘ˆ and ๐บ โ€ฒ(๐‘—) have the desired trapdoor structure. Slide 99

  64. Recap. MQ Schemes Slide 100

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend