introduction
play

Introduction Measure properties of unitarity triangle to test CKM - PowerPoint PPT Presentation

Results On 2 From e + e Colliders Pit Vanhoefer on behalf of the Belle Collaboration Max-Planck-Institut f ur Physik, M unchen BELLE pvanhoef at mpp.mpg.de 2 / : Decays covered in this talk ( , ) a) B * *


  1. Results On φ 2 From e + e − Colliders Pit Vanhoefer on behalf of the Belle Collaboration Max-Planck-Institut f¨ ur Physik, M¨ unchen BELLE pvanhoef at mpp.mpg.de φ 2 /α : Decays covered in this talk ( ρ , η ) a) B → ππ φ * * * V V ud V ud V V td V | | | | | | ub ub tb 2 * * * cd V cd V b) B → ρρ V V | | | | cd V | | V cb cb cb c) B 0 → ( ρπ ) 0 d) B 0 → a ± φ φ 1 π ∓ 3 1 0 (1,0) φ 2 from e + e − colliders 1 Pit Vanhoefer(MPI) FPCP 2013

  2. Introduction • Measure properties of unitarity triangle to test CKM mechanism: 2 sides, 3 angles • Time-dependent decay rate of a B or a ¯ B meson decaying into common CP eigenstate P (∆ t ) = e −| ∆ t | /τ B 0 � � �� 1 + q S CP sin(∆ m d ∆ t ) + A CP cos(∆ m d ∆ t ) 4 τ B 0 1.5 excluded at CL > 0.95 excluded area has CL > 0.95 φ • A CP : direct CP violation ( = −C CP ) 3 1.0 ∆ ∆ m & m s d φ sin 2 • S CP : mixing induced CP violation 1 0.5 ∆ m d ε • q : flavor of B tag , q = +1 for B tag = B 0 φ K 2 φ φ η 1 0.0 3 φ 2 • τ B 0 : B life time φ V ub 2 -0.5 • ∆ m d : mass difference of B H and B L ε -1.0 K CKM φ • ∆ t : decay time difference of B CP and B tag φ sol. w/ cos 2 < 0 f i t t e r 1 3 Winter 12 (excl. at CL > 0.95) -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 ρ φ 2 from e + e − colliders 2 Pit Vanhoefer(MPI) FPCP 2013

  3. ✟ Mixing Induced ✟✟✟✟ CP � V td V ∗ � ✟ • φ 2 = arg CP in b → u transitions, tb accesible through mixing induced ✟ V ub V ∗ ud 0 0 e.g. interference between B → π + π − B f f B CP CP CP 0 0 B B u * —— V mixing induced ud d → ———— + W * V V V ub ub ud u B f CP b d d * V V V * 2 x and B → ¯ V B → π + π − tb td ub ud u * B ր V ud V V d td tb f CP = ρ ρ π π, d t b + W V ub 0 0 B W W B u + b ⇒ at tree level: d d b t d V V S CP = sin(2 φ 2 ) , A CP = 0 tb td φ 2 from e + e − colliders 3 Pit Vanhoefer(MPI) FPCP 2013

  4. Living With Pollution b → u ( ρ , π , ...) at Tree level: S CP = sin(2 φ 2 ) and no direct ✟ CP ( A CP = 0 ) ✟ BUT more amplitudes (penguins) can contribute with different weak/strong phases + W V ub t b u b d * V V tb td u d + W g * V ud d d d d d d ⇒ φ 2 penguin pollution ⇒ ∆ φ 2 , A CP CP sin(2 φ eff � 1 − A 2 ⇒ measured observable φ eff S CP = ) = φ 2 + ∆ φ 2 2 2 with A CP � = 0 possible → extraction of ∆ φ 2 with isospin analysis is possible φ 2 from e + e − colliders 4 Pit Vanhoefer(MPI) FPCP 2013

  5. Recover φ 2 • extraction of ∆ φ 2 with isospin analysis (remove penguin pollution) for unflavored isospin triplets, e.g. ρ, π Bose statistics: ⇒ I=0,2 (final states); A tree I=0,2; 00 penguin: I=0 only (gluon) 1 1 A A +- allows to formulate relations of the A +- 2 00 2 decay amplitudes A ∆ φ 2 A + − = A ( ¯ 2 e.g. ¯ B → ρ + ρ − ) A = A +0 -0 2 A + − + A 00 = A +0 1 • √ A + − + ¯ A 00 = ¯ 2 ¯ 1 A − 0 • √ M. Gronau and D. London, PRL 65 3381 (1990) • A +0 = ¯ A − 0 (no penguin) ⇒ geometrical considerations reveal ∆ φ 2 φ 2 from e + e − colliders 5 Pit Vanhoefer(MPI) FPCP 2013

  6. Data Samples φ 2 from e + e − colliders 6 Pit Vanhoefer(MPI) FPCP 2013

  7. B → π + π − BaBar PRD 87 052009(2013) Belle arXiv:1302.0551 467 × 10 6 B ¯ 772 × 10 6 B ¯ B pairs B pairs 160 160 160 160 Events / ps Events / ps Events / ps Events / ps 140 140 140 140 B A B AR 120 120 120 120 Preliminary Events / (1.5 ps) 100 100 100 100 q = +1 300 80 80 80 80 PRELIMINARY q = -1 60 60 60 60 40 40 40 40 250 20 20 20 20 0 0 0 0 -6 -6 -4 -4 -2 -2 0 0 2 2 4 4 6 6 -6 -6 -4 -4 -2 -2 0 0 2 2 4 4 6 6 ∆ ∆ t (ps) t (ps) ∆ ∆ t (ps) t (ps) 200 1 1 Asymmetry 0.8 0.8 150 0.6 0.6 100 BELLE 0.4 0.4 0.2 0.2 50 0 0 -0.2 -0.2 0 0 B B +N -0.4 -0.4 0.5 -N -0.6 -0.6 0 0 0 B B N N -0.8 -0.8 -0.5 -1 -1 -6 -6 -4 -4 -2 -2 0 0 2 2 4 4 6 6 -7.5 -5 -2.5 0 2.5 5 7.5 ∆ t (ps) t (ps) ∆ ∆ t (ps) S π + π − S π + π − = − 0 . 636 ± 0 . 082 ± 0 . 027 = − 0 . 68 ± 0 . 10 ± 0 . 03 CP CP A π + π − A π + π − = +0 . 328 ± 0 . 061 ± 0 . 027 = +0 . 25 ± 0 . 08 ± 0 . 02 CP CP ✟ ⇒ clear mixing induced ✟ CP and presence of penguins φ 2 from e + e − colliders 7 Pit Vanhoefer(MPI) FPCP 2013

  8. B → π + π − C CP = −A CP World averages π + π - S CP H F A G H F A G π + π - S CP vs C CP H F AG H F A G CKM 2012 PRELIMINARY CKM 2012 C CP BaBar -0.68 ± 0.10 ± 0.03 PRELIMINARY arXiv:1206.3525 BaBar 0 Belle -0.64 ± 0.08 ± 0.03 CKM 2012 Belle HFAG CKM2012 preliminary LHCb LHCb -0.56 ± 0.17 ± 0.03 Average LHCb-CONF-2012-007 -0.65 ± 0.06 Average -0.2 HFAG correlated average -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.4 π + π - C CP H F A G H F A G CKM 2012 PRELIMINARY BaBar -0.25 ± 0.08 ± 0.02 -0.6 arXiv:1206.3525 Belle -0.33 ± 0.06 ± 0.03 CKM 2012 HFAG CKM2012 preliminary LHCb -0.11 ± 0.21 ± 0.03 LHCb-CONF-2012-007 -0.8 Average -0.29 ± 0.05 -0.8 -0.6 -0.4 -0.2 0 HFAG correlated average S CP -0.8 -0.6 -0.4 -0.2 0 0.2 Contours give -2 ∆ (ln L) = ∆χ 2 = 1, corresponding to 60.7 % CL for 2 dof ⇒ good agreements between experiments (prev. tension removed) φ 2 from e + e − colliders 8 Pit Vanhoefer(MPI) FPCP 2013

  9. B → π 0 π 0 BaBar Belle PRD 87 052009(2013) PRL 94 181803 (2005) 467 × 10 6 B ¯ B pairs 275 × 10 6 B ¯ B pairs ) ) 150 150 2 2 Events / ( 5 MeV/ c Events / ( 5 MeV/ c ¯ B B 100 100 background substracted 50 50 0 0 5.2 5.2 5.22 5.22 5.24 5.24 5.26 5.26 5.28 5.28 2 2 m m (GeV/c (GeV/c ) ) ES ES � E 2 beam − p 2 m ES = M bc = B BaBar Belle B ( B 0 → π 0 π 0 ) × 10 6 2 . 3 +0 . 4 +0 . 2 1 . 83 ± 0 . 21 ± 0 . 13 − 0 . 5 − 0 . 3 A π 0 π 0 0 . 44 +0 . 53 0 . 43 ± 0 . 26 ± 0 . 05 − 0 . 52 ± 0 . 17 CP φ 2 from e + e − colliders 9 Pit Vanhoefer(MPI) FPCP 2013

  10. B ± → π ± π 0 BaBar Belle PRD 76 091102 (2007) arxiv:1210.1348 (2012) 383 × 10 6 B ¯ B pairs 772 × 10 6 B ¯ B pairs 800 800 800 ) (a) 2 Events/(3.3MeV/c π π 0 ± 600 600 600 ± K π 0 400 400 400 200 200 200 background substracted signal enhanced 0 0 0 5.24 5.24 5.24 5.26 5.26 5.26 5.28 5.28 5.28 M bc ( GeV/c 2 ) ∆ E ( GeV ) 2 2 2 m m m (GeV/c (GeV/c (GeV/c ) ) ) ES ∆ E = E B rec − E beam BaBar Belle B ( B ± → π ± π 0 ) × 10 6 5 . 02 ± 0 . 46 ± 0 . 29 5 . 86 ± 0 . 26 ± 0 . 38 A π ± π 0 0 . 03 ± 0 . 08 ± 0 . 01 0 . 043 ± 0 . 043 ± 0 . 007 CP φ 2 from e + e − colliders 10 Pit Vanhoefer(MPI) FPCP 2013

  11. B → ππ φ 2 /α constraints C K M f i t t e r CKM12 (prel.) CKM → π π B (BABAR) f i t t e r → π π B (Belle) CKM fit CKM12 (prel.) → π π B (WA) 1.0 0.8 0.6 p-value C K M f i t t e r CKM12 (prel.) 0.4 0.2 0.0 0 20 40 60 80 100 120 140 160 180 φ (deg) 2 WA: φ 2 /α = (87 . 1 +17 . 5 Belle: φ 2 ∈ [85 . 0 ◦ , 148 . 0 ◦ ] , Babar: α ∈ [71 ◦ , 109 ◦ ] , − 7 . 8 ) ◦ φ 2 from e + e − colliders 11 Pit Vanhoefer(MPI) FPCP 2013

  12. B → ρρ helicity basis: • B → ρρ π π π π π π + + + + + + ρ → ππ • S → VV decay π π π π + + + + φ θ Hel θ Hel ֒ → superposition of CP even and ρ 0 ρ 0 0 π - B odd states ֒ → separation through helicity analy- π - sis • f L : fraction of longitudinal polarization(LP , pure CP even final states) � � 4 (1 − f L ) sin 2 θ 1 Hel sin 2 θ 2 f L cos 2 θ 1 Hel cos 2 θ 2 d 2 Γ 1 Hel = 9 1 Hel + d cos θ 1 Hel d cos θ 2 Hel Γ 4 naiv SM expectation: f L ∼ 1 − m 2 B ∼ 1 difficult to predict for color-suppressed mode V m 2 B 0 → ρ 0 ρ 0 • smaller statistics(exp.) less penguin pollution compared to B → ππ φ 2 from e + e − colliders 12 Pit Vanhoefer(MPI) FPCP 2013

  13. B 0 → ρ + ρ − Helicity BaBar Belle PRD 76 052007 (2007) PRL 96 171801 (2006) 384 million B ¯ 275 million B ¯ B pairs B pairs (c) Events / (0.188) 200 100 0 -0.5 0 0.5 cos( θ ) i BaBar Belle B ( B 0 → ρ + ρ − ) × 10 6 (25 . 5 ± 2 . 1 +3 . 6 (22 . 8 ± 3 . 8 +2 . 3 − 3 . 9 ) − 2 . 6 ) 0 . 992 ± 0 . 024 +0 . 026 0 . 941 +0 . 034 f L − 0 . 040 ± 0 . 030 − 0 . 013 φ 2 from e + e − colliders 13 Pit Vanhoefer(MPI) FPCP 2013

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend