intense 3 8 mev positron source
play

Intense 3~8 MeV Positron Source Introduction Geometry, e + - PowerPoint PPT Presentation

Intense 3~8 MeV Positron Source Introduction Geometry, e + production rate Energy & emission angle distributions Heat inside target Target destruction experimental tests Electrons after the foil? R&D P. Prez


  1. Intense 3~8 MeV Positron Source • Introduction • Geometry, e + production rate • Energy & emission angle distributions • Heat inside target • Target destruction experimental tests • Electrons after the foil? R&D P. Pérez et A. Rosowsky NIM A Vol 532, pp 523-532 2004

  2. Introduction • Beam energy/intensity: 10 MeV 2 ~ 10 mA • Target geometry: thin foil at grazing incidence (3 0 ) – thermal effects: X-rays + e - leak – probability of first interaction (e + and X-rays) • Designed for e + < 1 MeV : – what happens for e + > 3 MeV ?

  3. Thin target at grazing angle Study energy deposit e- beam: as a function of ∆ x = 0.1 mm incidence angle ∆ y = 1 mm Thickness = D equivalent thickness: D’ = D / sin 3 0 D 3 0 D ’

  4. Track length inside target e - track length inside targets 1 mm 90 0 of 1 mm equivalent thickness 50 µ m 3 0 <L> rms 3 0 0.11 0.11 90 0 0.53 0.48

  5. Geant 3.21 Simulation Electrons at target exit 10 MeV electrons

  6. Kinetic energy at target exit positrons electrons Kinetic energy (GeV) Kinetic energy (GeV)

  7. Positrons at target exit 50 µ m tungsten foil Kinetic energy > 3 Mev Kinetic energy (GeV) Pz ( MeV/c ) z at e+ creation location

  8. Positrons at target exit .. Px ( MeV/c ) θ ( degree ) Kinetic energy > 3 Mev

  9. Positrons at target exit … Kinetic energy > 3 Mev Example of selection: 25 0 < θ < 35 0 -95 0 < ϕ < -85 0 Nb e + at target exit / total e − 3 < K < 8 MeV 1.90 e-6 ϕ ( degree ) 3 < K < 5 MeV 1.52 e-6

  10. Geometrical effect on thin target energy leak e - dE/dx at 3 0 e - dE/dx at 5 0 e - dE/dx at 10 0

  11. Experimental target tests (1) e - soldering test on Tungsten 50 µ m 40 kV / 20 mA on 20 mm 2 not perforated at 15 mA Study hypothesis: 1 k W / cm 2 Tungsten foils 5 cm x 5 cm on a tungsten holder (same expansion)

  12. Electron welding tests Illuminated area = 0.2 cm 2 50 µ m 40 KV Welding beam Power (W) Welding beam Power (W) I MAX (mA) I MAX (mA) 40, 50 kV beam leak I MAX 30 kV no leak Power Thickness (mm) Voltage (KV) Power limit < 3.15 kW

  13. Energy deposit in 1cm 2 target Simulation with GEANT E(e - ) = 10 MeV E(e - ) = 100 MeV Deposited power for 1 mA Deposited power for 1 mA Power (W) 90 0 90 0 4.5 kW/mA 3 0 3 0 1.7 kW/mA 4 kW/mA D’ ( µ m) D’ ( µ m)

  14. Maximum input current Simulation with GEANT E(e - ) = 10 MeV E(e - ) = 100 MeV I MAX for 1 kW deposited Current (mA) I MAX for 1 kW deposited Current (mA)  0.3 mA 0.59 mA 3 0 3 0 0.22 mA 90 0 90 0 D’ ( µ m) D’ ( µ m)

  15. Optimal production rates (forward) Power deposited in 1 cm 2 target = 1 kW X 10 9 E(e - ) = 10 MeV X 10 11 E(e - ) = 100 MeV Ne + (s -1 ) Ne + (s -1 ) e + forward e + forward 3 0 1.5 10 14 3 0 5.5 10 12 0.7 10 14 90 0 90 0 D’ ( µ m) D’ ( µ m)

  16. Experimental target tests (2) 10 MeV Linac: Laser driven e - photo-emission Visible target hole: Macro-pulse 70 µ s 10 Hz ~ 1.3 mm x 0.3 mm Tungsten target 100 µ m   2.0 ± 0.6 kW / cm 2 Center: 96 µ m Edge: 99 µ m Beam incident angle : 45 0 Beam energy deposited = 2 %

  17. Experimental target tests (2) .. Target hole Stopping just before the hole …

  18. Rotating disk target? Target: tungsten 50 µ m Deposited at 3 0 ~ 1 kW = 0.58 mA Rotating disk: e − 10 MeV 10 mA 3 0 100 t/s (?) Ø 25 cm → 0.64 mA / cm 2 = 1.1 kW / cm 2 power ~ 1 / 785 x beam 25 0 < θ < 35 0 Beam spot on target: -95 0 < ϕ < -85 0 1mm x 2mm = 2 mm 2 → 1 / 50 cm 2 Number of e + at target exit 1.19 10 11 s -1 3 < K < 8 MeV 0.95 10 11 s -1 3 < K < 5 MeV

  19. Electrons after the target Mimic the collector with an iron cylinder % of total beam energy deposited inside Iron cylinder L = 20 cm R1-R2 = 10-15 cm edge at 10 cm 37.3 % edge at 20 cm 23.7 % edge at 30 cm 12.36 %

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend