positron source for annihilation spectroscopy
play

POSITRON SOURCE FOR ANNIHILATION SPECTROSCOPY R.M. Djilkiabev, - PowerPoint PPT Presentation

POSITRON SOURCE FOR ANNIHILATION SPECTROSCOPY R.M. Djilkiabev, INR, Moscow Friday, September 21, 2012 SLOW POSITRON SOURCE FOR FUNDAMENTAL AND APPLIED PHYSICS Positronium (e + e - ) is a simplest atom and ideal system to probe a new


  1. POSITRON SOURCE FOR ANNIHILATION SPECTROSCOPY R.M. Djilkiabev, INR, Moscow Friday, September 21, 2012

  2. SLOW POSITRON SOURCE FOR FUNDAMENTAL AND APPLIED PHYSICS Positronium (e + e - ) is a simplest atom and ideal system to probe a new physics beyond the Standard model (SM) Mirror world model is one of the possible extensions of SM of particle physics Precision measurements of o-Ps decay time in vacuum. Precision of QED calculation is higher of two order of magnitude then experimental level Positron annihilation spectroscopy (PAS) is a unique method to define material defect size and concentration, near surface, in nano meter scale Friday, September 21, 2012

  3. POSITRONIUM (P S ) E n = -13.6/2n 2 , r = 2 r b = 0.1 nm Singlet state, (2 γ , 4 γ ...) τ s = 125 ps 1 S 0 para-positronium (p-P s ) Triplet state, (3 γ , 5 γ ...) = 142 ns 3 S 1 ortho-positronium (o-P s ) Friday, September 21, 2012

  4. FUNDAMENTAL PHYSICS MIRROR DARK MATTER o-Ps go to invisible mode Lagrangian ∼ ε F μν F’ μν ; Δ E = 2h ε f experimental upper limit for ε < 2 10 -7 Oscillation in vacuum DAMA/NaI Γ SM -> o-Ps decay rate, Ω = 2 π ε f R.Foot, Phys.Rev.D78,043529,2008 Br(o-Ps->invis.) = 210 -7 , ε = 410 -9 Friday, September 21, 2012

  5. AN EXPERIMENT TO SEARCH FOR MIRROR DARK MATTER P.Crivelli et al. “A new exp. to search for mirror o-Ps -> invisible mode dark matter”, arXiv:1005.4802.v4[hep-ex] Background level - 10 -7 10 4 e + /s, T exp - 10 6 s PhysRevD.75.032004,2007 Signal Friday, September 21, 2012

  6. APPLIED PHYSICS POSITRON SPECTROSCOPY OM - optical microscope, TEM - transmission electron microscope, nS - neutron scattering, XRS - x-ray scattering with synchrotron radiation, STM - scanning tunneling microscope, AFM - atomic force microscope Web site www.positronsystems.com Friday, September 21, 2012

  7. POSITRON ANNIHILATION SPECTROSCOPY σ 2 γ = π r 02 c/v, r 0 =2.8 fm λ = σ 2 γ v n e [1/s] sin θ ≅ p t /m e c Δ E γ = p p c /2 V.I. Grafutin, E.P. Prokopiev, UFN 172, 1 Friday, September 21, 2012

  8. POROSITY MEASUREMENT CERN(MCP) А . С . Белов , А . И . Берлев , С . Н . Гниненко и др . ” Технологический комплекс позитронной аннигиляционной спектроскопии для исследования наноструктурных материалов и неразрушающего контроля , диагностики и анализа присутствующих в них примесях ”, Москва , 2011 Friday, September 21, 2012

  9. POSITRON SOURCES Radioactive source 22 Na -> 22 Ne + e + + γ (1.28), 2.6y 52 Co (72d), 64 Cu (13h) 18 F (92h) Electron accelerator with energy 8 - 260 МэВ Neutron reactor ( γ , n-> γ ) γ (E γ >1.02 MeV) -> e + + e - Friday, September 21, 2012

  10. SLOW POSITRON BEAMS Continuous electron accelerator, duty factor ∼ 1: Argonne Nat. Lab, LINAC 15 MeV, 200 μ A, pulse 30ps, apart repeatedly 768 ps, slow positron beam - 10 10 e + / sec. Duty factor 1 Pulsed electron , duty factor ∼ 10 -2 -10 -4 : Japan, Tsukuba AIST LINAC 8-70 MeV, 100-10 μ A, slow positron beam - 10 8 e + /sec Germany, MAMI microtron, 170 MeV, 75 μ A, slow positron beam - 10 8 e + /sec ; Giessen LINAC, 35 MeV, 100 μ A, slow positron beam - 10 8 e + /sec Friday, September 21, 2012

  11. ELECTRON ENERGY FOR POSITRON SOURCE Minimal e - energy? Target - W, Ta 6 Mev e - , Saclay, France Friday, September 21, 2012

  12. AIST LINAC SLOW POSITRON SOURCE AIST LINAC 70 MeV 10 μ A, 100 Hz, pulse 1 μ s B.E. O’Rourke et al., ‘AIST simulation of slow positron production ...’, arXiv: 1102.1220v2, 10 May 2011, Advanced Industrial Science and Technology (AIST),Japan Friday, September 21, 2012

  13. AIST LINAC SLOW POSITRON SOURCE Expected e + source intensity A NEW SOURCE 10 8 e + /s Friday, September 21, 2012

  14. ARGONNE SLOW POSITRON SOURCE ANL LINAC 15 MeV, pulse 30ps, apart repeatedly 768 ps, 200 μ A, 35 kW Proposed combined target, 10 W plate d = 0.4 mm, L = 10 mm, gap = 1mm, θ =10 o Target eff. - 10 -3 Moderator W eff. - 10 -3 Slow e + - 10 9 e + /s H.M. Chen et al. Applied Surface Science 252, 3159, 2006 Friday, September 21, 2012

  15. A NEW POSITRON SOURCE WITH A MAGNETIC TRAP Electron energy - 8 MeV Beam e - GEANT3 simulation Moderator W target - 1.5 mm, r=0.5 cm Target Setup with B field 0.6 - 0.3 T Cone moderator - 4 μ m W foil e + yield - 1.8x10 -3 e + / e e + - stop efficiency - 1.5x10 -4 /e Friday, September 21, 2012

  16. SLOW POSITRON YIELD FROM THIN W FOIL e + leave W surface T e+ = 2.8 eV ε W = 0.05/4 = 1.25x10 -2 Slow positron yield = 1.5x10 -4 x1.25x10 -2 =2x10 -6 e + /e Thermolized positron is transported by a small length λ d Probability P( λ d ) = 1 - exp (- λ d / λ T ), λ T - total mean path 1/ λ T = 1/ λ c + 1/ λ a , λ c - collision length, λ a - anni.length Escaping profile P(z) = f(z) exp(-z/L) 0.6 T 0.6 T Friday, September 21, 2012

  17. SLOW POSITRON BEAM WITH A MAGNETIC TRAP Electron beam 8 MeV, 10 μ A (6x10 13 e - ) Yield e + /e increased 10 times Intensity of e + = 1.2x10 8 (2x10 -6 x 6x10 13 ) Beam e - MAMI Mainz Target Moderator Friday, September 21, 2012

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend