instability and failure prediction for sheet metal
play

Instability and Failure Prediction for Sheet Metal Forming - PowerPoint PPT Presentation

Instability and Failure Prediction for Sheet Metal Forming Applications with LS-DYNA Andr Haufe Dynamore GmbH Industriestrae 2 70565 Stuttgart http://www.dynamore.de LS-Dyna Info-Day 2011 DYNAmore Stuttgart A. Haufe Motivation


  1. Instability and Failure Prediction for Sheet Metal Forming Applications with LS-DYNA André Haufe Dynamore GmbH Industriestraße 2 70565 Stuttgart http://www.dynamore.de LS-Dyna Info-Day 2011 – DYNAmore – Stuttgart – A. Haufe

  2. Motivation LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 2

  3. Technological challenges in the automotive industry Weight Composites High strength steel Safety requirements New materials Light alloys Polymers New power train technology Cost effectiveness Design to the point LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 3

  4. Technological challenges in the automotive industry Weight Composites High strength steel Safety requirements New materials Light alloys Polymers Damage New power train E technology   Cost effectiveness  max Anisotropy Design to the point c b a Fracture growth Debonding Failure  Plasticity E  E ( ) e      fail true  y LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 4

  5. Motivation Lightweight steel/aluminium design! Can we predict failure modes (brittle, ductile, time delayed)? 22MnB5 CP800 TWIP TRIP800 ZE340 Aural LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 5

  6. Motivation Material behavior dependent on local history of loading Micro-alloyed steel Hot-formed steel 900 1800 800 1600 700 1400 600 1200 500 stress stress 1000 400 800  300  600 200 400 100 200 0 0 strain 0.00 0.10 0.20 0.30 0.40 0.50 strain 0,00 0,05 0,10 0   LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 6

  7. Closing the process chain: Standard materials / state of the art Forming simulation Crash simulation  v. Mises or Gurson model  Hill based models  Anisotropiy of yield surface  Strain rate dependency  Isotropic hardening  Kinematic/Isotropic hardening  Damage evolution  State of the art: Failure by FLD (post-processing)  Failure models  NEW: Computation of damage (mapping of damage variable) (GISSMO) Mapping   II II  II  I  I  III    III III I LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 7

  8. Preliminary considerations for plane stress LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 8

  9. Plane stress condition  Typical discretization with shell elements: xx   yy  xy yx Principle axis Plane stress Parameterised           0 0  ( , ) 1 1 1     1         σ 0 k 0 ( , )    2 2 1        0   0 0 0  σ 3 3      k 0   2 1   0           2 1 ( k 1) k     0 1 vm    p ( k 1) ( k 1)        1 sign( ) Definition of stress triaxiality:      1    2 3 1 ( k 1) k 3 1 ( k 1) k vm 1 LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 9

  10. Haigh-Westergaard coordinates in principle stress space 1 tr( ) I    σ 1 Lode angle 3 3    2 J : s s 2   1 3 3 J Deviatoric     3 arccos   plane 1.5 3  2 J  2 p   Definition of stress triaxiality:  vm LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 10

  11. A toy to visualize stress invariants (downloadable from the www.dynamore.se) page 1: Crafting instructions • Download the PDF-file • Print on thick piece of paper • Cut out where indicated • Add four wooden sticks (15cm) • Add some glue where necessary (engineers should find out the locations without further instructions – all others contact their local distributor) • Have fun! LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 11

  12. A toy to visualize stress invariants (downloadable from the www.dynamore.se) Crafting instructions page 2: • Page 2 of the set may be added for further clarification of the triaxiality variable. Final shape of toy LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 12

  13. Plane stress parameterised for shells    p ( k 1) ( k 1)        1 Triaxiality sign( )      1    2 3 1 ( k 1) k 3 1 ( k 1) k vm 1 Bounds: Compression p    ( k 1) 1         lim lim sign( ) sign( ) vm   1 1   3 3 1 ( k 1) k k k tension compression Tension k  ( k 1) 1       lim lim sign( ) sign( )   1 1   3 k k 3 1 ( k 1) k Biaxial tension  ( k 1) 2        lim lim sign( ) sign( )   1 1   3 k 1 k 1 3 1 ( k 1) k LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 13

  14. How to define the accumulation of damage ? A comparison of model approaches Investigation of failure criteria for the following case: 0  Plane stress: 3       and  Small elastic deformations: 1 p 1 2 p 2 Damage or failure criteria  Isochoric plasticity: 3 p 3 p 1 p 2 4 2 2 1 b b     Proportional loading: a p p 1 3  2 1 1 2 b     a 2 2 1 a a b  2 b vm 1 2 1 p p p 1 a 3 1 a 2 a vm LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 14

  15. How to define the accumulation of damage ? A comparison of classical model approaches Some typical loading paths LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 15

  16. How to define the accumulation of damage ? A comparison of classical model approaches Some typical loading paths Four criteria Principal strain: 1 max p 1 1 max Equivalent plastic strain: 4 3 2 max 2 1 b 2 b p p 1 max p 1 3 4 1 b 2 b Thinning: p 3 max max p 3 p 1 2 1 b 2 1 b Diffuse necking: 2 2 1 b b p 1 max 1 b 2 b 2 b 2 LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 16

  17. Failure models in the plane of principal strain Failure strain under uniaxial tension is set the same in all 4 criteria. Thinning and FLD predict no failure under pure shear loading. LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 17

  18. Failure models in the plane of major strain vs. b LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 18

  19. Failure models in the plane equivalent plastic strain vs. b Calibrating different criteria to a uniaxial tension test can lead to considerably different response in other load cases. LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 19

  20. Failure models: equivalent plastic strain vs. triaxiality For uniaxial and biaxial tension different criteria lead to a factor of 2: 0.5 2, p 1, p p 1, p 2 1, p 2, p p 1, p LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 20

  21. Johnson-Cook criterion (Hancock-McKenzie ) p d 3 d d e vm pf 1 2 d 0 1 3 d 3 2 1 d e 2 2 1 f Johnson-Cook and FLC are very close in the neighborhood of uniaxial tension. LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 21

  22. Parametrized for 3D stress space LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 22

  23. Lode-angle: Extension- and Compression test   III III Possible value for first principle stress    II III      and 0 I II III   and 0 I Compression Compression  Extension   II  II   I       I 30     30 View not parallel to hydrostatic axis View parallel and on hydrostatic axis (perpendicular to deviator plane) LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 23

  24. 3D-Stress state parameterised for volume elements 0 1 0 0 1 F 1 0 0 0 0 1 1 4 0 0 1 1 0 0 1 extension 0 0 0 2 1 0 0 1 4 0 0 0 0 0 0 compression 0 0 1 0 0 0  0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0 1 2 p    vm LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 24

  25. Invariants in 3D stress space Failure criterion extd. for 3D solids Parameter definition  I    m 1   3 vM vM 27 J    Stress domain in 3 J s s s mit  3 3 1 2 3 sheet metal forming 2 vM [Source: Wierzbicki et al.]        1 or 30      0 0 or      1 or 30 LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 25

  26. Failure Prediction for UHSS: Adding some damage LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 26

  27. Closing the process chain: Standard materials / state of the art Forming simulation Crash simulation  v. Mises or Gurson model  Hill based models  Anisotropiy of yield surface  Strain rate dependency  Isotropic hardening  Kinematic/Isotropic hardening  Damage evolution  State of the art: Failure by FLD (post-processing)  Failure models  NEW: Computation of damage (mapping of damage variable) (GISSMO) Mapping   II II  II  I  I  III    III III I LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend