inner functions of numerical contractions
play

Inner Functions of Numerical Contractions Hwa-Long Gau Department - PowerPoint PPT Presentation

Inner Functions of Numerical Contractions Hwa-Long Gau Department of Mathematics, National Central University, Chung-Li 320, Taiwan (jointly with Pei Yuan Wu) August 10, 2010 Hwa-Long Gau Inner Functions of Numerical Contractions 1/29


  1. Inner Functions of Numerical Contractions Hwa-Long Gau Department of Mathematics, National Central University, Chung-Li 320, Taiwan (jointly with Pei Yuan Wu) August 10, 2010 Hwa-Long Gau Inner Functions of Numerical Contractions 1/29

  2. Numerical Ranges H : a complex Hilbert space B ( H ) = { all bounded linear operators on H } , A ∈ B ( H ) Definition (numerical range of A ) W ( A ) = {� Ax , x � : x ∈ H , � x � = 1 } Basic properties: (1) W ( A ) ⊂ C is always bounded and convex. ( |� Ax , x �| ≤ � Ax �� x � ≤ � A � ) (2) If dim H < ∞ , then W ( A ) is closed. (3) W ( U ∗ AU ) = W ( A ), where U is unitary. pf. � U ∗ AUx , x � = � A ( Ux ) , ( Ux ) � and U ( { x : � x � = 1 } ) = { x : � x � = 1 } (4) A = λ I , λ ∈ C ⇔ W ( A ) = { λ } pf. � ( A − λ I ) x , x � = 0 , ∀ x ⇔ A = λ I (5) σ ( A ) ⊂ W ( A ). pf. If ( A − λ I ) x n → 0 , � x n � = 1 ⇒ � Ax n , x n � → λ Hwa-Long Gau Inner Functions of Numerical Contractions 2/29

  3. Numerical Ranges H : a complex Hilbert space B ( H ) = { all bounded linear operators on H } , A ∈ B ( H ) Definition (numerical range of A ) W ( A ) = {� Ax , x � : x ∈ H , � x � = 1 } Basic properties: (1) W ( A ) ⊂ C is always bounded and convex. ( |� Ax , x �| ≤ � Ax �� x � ≤ � A � ) (2) If dim H < ∞ , then W ( A ) is closed. (3) W ( U ∗ AU ) = W ( A ), where U is unitary. pf. � U ∗ AUx , x � = � A ( Ux ) , ( Ux ) � and U ( { x : � x � = 1 } ) = { x : � x � = 1 } (4) A = λ I , λ ∈ C ⇔ W ( A ) = { λ } pf. � ( A − λ I ) x , x � = 0 , ∀ x ⇔ A = λ I (5) σ ( A ) ⊂ W ( A ). pf. If ( A − λ I ) x n → 0 , � x n � = 1 ⇒ � Ax n , x n � → λ Hwa-Long Gau Inner Functions of Numerical Contractions 2/29

  4. Numerical Ranges H : a complex Hilbert space B ( H ) = { all bounded linear operators on H } , A ∈ B ( H ) Definition (numerical range of A ) W ( A ) = {� Ax , x � : x ∈ H , � x � = 1 } Basic properties: (1) W ( A ) ⊂ C is always bounded and convex. ( |� Ax , x �| ≤ � Ax �� x � ≤ � A � ) (2) If dim H < ∞ , then W ( A ) is closed. (3) W ( U ∗ AU ) = W ( A ), where U is unitary. pf. � U ∗ AUx , x � = � A ( Ux ) , ( Ux ) � and U ( { x : � x � = 1 } ) = { x : � x � = 1 } (4) A = λ I , λ ∈ C ⇔ W ( A ) = { λ } pf. � ( A − λ I ) x , x � = 0 , ∀ x ⇔ A = λ I (5) σ ( A ) ⊂ W ( A ). pf. If ( A − λ I ) x n → 0 , � x n � = 1 ⇒ � Ax n , x n � → λ Hwa-Long Gau Inner Functions of Numerical Contractions 2/29

  5. Numerical Ranges H : a complex Hilbert space B ( H ) = { all bounded linear operators on H } , A ∈ B ( H ) Definition (numerical range of A ) W ( A ) = {� Ax , x � : x ∈ H , � x � = 1 } Basic properties: (1) W ( A ) ⊂ C is always bounded and convex. ( |� Ax , x �| ≤ � Ax �� x � ≤ � A � ) (2) If dim H < ∞ , then W ( A ) is closed. (3) W ( U ∗ AU ) = W ( A ), where U is unitary. pf. � U ∗ AUx , x � = � A ( Ux ) , ( Ux ) � and U ( { x : � x � = 1 } ) = { x : � x � = 1 } (4) A = λ I , λ ∈ C ⇔ W ( A ) = { λ } pf. � ( A − λ I ) x , x � = 0 , ∀ x ⇔ A = λ I (5) σ ( A ) ⊂ W ( A ). pf. If ( A − λ I ) x n → 0 , � x n � = 1 ⇒ � Ax n , x n � → λ Hwa-Long Gau Inner Functions of Numerical Contractions 2/29

  6. Numerical Ranges H : a complex Hilbert space B ( H ) = { all bounded linear operators on H } , A ∈ B ( H ) Definition (numerical range of A ) W ( A ) = {� Ax , x � : x ∈ H , � x � = 1 } Basic properties: (1) W ( A ) ⊂ C is always bounded and convex. ( |� Ax , x �| ≤ � Ax �� x � ≤ � A � ) (2) If dim H < ∞ , then W ( A ) is closed. (3) W ( U ∗ AU ) = W ( A ), where U is unitary. pf. � U ∗ AUx , x � = � A ( Ux ) , ( Ux ) � and U ( { x : � x � = 1 } ) = { x : � x � = 1 } (4) A = λ I , λ ∈ C ⇔ W ( A ) = { λ } pf. � ( A − λ I ) x , x � = 0 , ∀ x ⇔ A = λ I (5) σ ( A ) ⊂ W ( A ). pf. If ( A − λ I ) x n → 0 , � x n � = 1 ⇒ � Ax n , x n � → λ Hwa-Long Gau Inner Functions of Numerical Contractions 2/29

  7. Numerical Ranges H : a complex Hilbert space B ( H ) = { all bounded linear operators on H } , A ∈ B ( H ) Definition (numerical range of A ) W ( A ) = {� Ax , x � : x ∈ H , � x � = 1 } Basic properties: (1) W ( A ) ⊂ C is always bounded and convex. ( |� Ax , x �| ≤ � Ax �� x � ≤ � A � ) (2) If dim H < ∞ , then W ( A ) is closed. (3) W ( U ∗ AU ) = W ( A ), where U is unitary. pf. � U ∗ AUx , x � = � A ( Ux ) , ( Ux ) � and U ( { x : � x � = 1 } ) = { x : � x � = 1 } (4) A = λ I , λ ∈ C ⇔ W ( A ) = { λ } pf. � ( A − λ I ) x , x � = 0 , ∀ x ⇔ A = λ I (5) σ ( A ) ⊂ W ( A ). pf. If ( A − λ I ) x n → 0 , � x n � = 1 ⇒ � Ax n , x n � → λ Hwa-Long Gau Inner Functions of Numerical Contractions 2/29

  8. Numerical Ranges H : a complex Hilbert space B ( H ) = { all bounded linear operators on H } , A ∈ B ( H ) Definition (numerical range of A ) W ( A ) = {� Ax , x � : x ∈ H , � x � = 1 } Basic properties: (1) W ( A ) ⊂ C is always bounded and convex. ( |� Ax , x �| ≤ � Ax �� x � ≤ � A � ) (2) If dim H < ∞ , then W ( A ) is closed. (3) W ( U ∗ AU ) = W ( A ), where U is unitary. pf. � U ∗ AUx , x � = � A ( Ux ) , ( Ux ) � and U ( { x : � x � = 1 } ) = { x : � x � = 1 } (4) A = λ I , λ ∈ C ⇔ W ( A ) = { λ } pf. � ( A − λ I ) x , x � = 0 , ∀ x ⇔ A = λ I (5) σ ( A ) ⊂ W ( A ). pf. If ( A − λ I ) x n → 0 , � x n � = 1 ⇒ � Ax n , x n � → λ Hwa-Long Gau Inner Functions of Numerical Contractions 2/29

  9. Numerical Ranges H : a complex Hilbert space B ( H ) = { all bounded linear operators on H } , A ∈ B ( H ) Definition (numerical range of A ) W ( A ) = {� Ax , x � : x ∈ H , � x � = 1 } Basic properties: (1) W ( A ) ⊂ C is always bounded and convex. ( |� Ax , x �| ≤ � Ax �� x � ≤ � A � ) (2) If dim H < ∞ , then W ( A ) is closed. (3) W ( U ∗ AU ) = W ( A ), where U is unitary. pf. � U ∗ AUx , x � = � A ( Ux ) , ( Ux ) � and U ( { x : � x � = 1 } ) = { x : � x � = 1 } (4) A = λ I , λ ∈ C ⇔ W ( A ) = { λ } pf. � ( A − λ I ) x , x � = 0 , ∀ x ⇔ A = λ I (5) σ ( A ) ⊂ W ( A ). pf. If ( A − λ I ) x n → 0 , � x n � = 1 ⇒ � Ax n , x n � → λ Hwa-Long Gau Inner Functions of Numerical Contractions 2/29

  10. Examples (6) If A is normal, then W ( A ) = convex hull( σ ( A )). Examples: a 1   0 a 1 a 2   ... (1) N =  ⇒ W ( N ) = convex hull ( σ ( N ))  W(N) a n a 3 0 a n       a 1 0 x 1 x 1    .   .  ...  � = a 1 | x 1 | 2 + · · · + a n | x n | 2 ∈ RHS . . pf. �  ,     . . 0 a n x n x n � 0 � 1 ⇒ W ( J 2 ) = { z ∈ C : | z | ≤ 1 (2) J 2 = 2 } 0 0 � 0 � � x 1 � � x 1 � � 1 � = x 2 x 1 = | x 1 x 2 | e i θ = t (1 − t ) e i θ pf. � , 0 0 x 2 x 2 � t (1 − t ) e i θ : 0 ≤ t ≤ 1 , θ ∈ R } = { z ∈ C : | z | ≤ 1 ⇒ W ( J 2 ) = { 2 } Hwa-Long Gau Inner Functions of Numerical Contractions 3/29

  11. Examples (6) If A is normal, then W ( A ) = convex hull( σ ( A )). Examples: a 1   0 a 1 a 2   ... (1) N =  ⇒ W ( N ) = convex hull ( σ ( N ))  W(N) a n a 3 0 a n       a 1 0 x 1 x 1    .   .  ...  � = a 1 | x 1 | 2 + · · · + a n | x n | 2 ∈ RHS . . pf. �  ,     . . 0 a n x n x n � 0 � 1 ⇒ W ( J 2 ) = { z ∈ C : | z | ≤ 1 (2) J 2 = 2 } 0 0 � 0 � � x 1 � � x 1 � � 1 � = x 2 x 1 = | x 1 x 2 | e i θ = t (1 − t ) e i θ pf. � , 0 0 x 2 x 2 � t (1 − t ) e i θ : 0 ≤ t ≤ 1 , θ ∈ R } = { z ∈ C : | z | ≤ 1 ⇒ W ( J 2 ) = { 2 } Hwa-Long Gau Inner Functions of Numerical Contractions 3/29

  12. Examples (6) If A is normal, then W ( A ) = convex hull( σ ( A )). Examples: a 1   0 a 1 a 2   ... (1) N =  ⇒ W ( N ) = convex hull ( σ ( N ))  W(N) a n a 3 0 a n       a 1 0 x 1 x 1    .   .  ...  � = a 1 | x 1 | 2 + · · · + a n | x n | 2 ∈ RHS . . pf. �  ,     . . 0 a n x n x n � 0 � 1 ⇒ W ( J 2 ) = { z ∈ C : | z | ≤ 1 (2) J 2 = 2 } 0 0 � 0 � � x 1 � � x 1 � � 1 � = x 2 x 1 = | x 1 x 2 | e i θ = t (1 − t ) e i θ pf. � , 0 0 x 2 x 2 � t (1 − t ) e i θ : 0 ≤ t ≤ 1 , θ ∈ R } = { z ∈ C : | z | ≤ 1 ⇒ W ( J 2 ) = { 2 } Hwa-Long Gau Inner Functions of Numerical Contractions 3/29

  13. Examples (6) If A is normal, then W ( A ) = convex hull( σ ( A )). Examples: a 1   0 a 1 a 2   ... (1) N =  ⇒ W ( N ) = convex hull ( σ ( N ))  W(N) a n a 3 0 a n       a 1 0 x 1 x 1    .   .  ...  � = a 1 | x 1 | 2 + · · · + a n | x n | 2 ∈ RHS . . pf. �  ,     . . 0 a n x n x n � 0 � 1 ⇒ W ( J 2 ) = { z ∈ C : | z | ≤ 1 (2) J 2 = 2 } 0 0 � 0 � � x 1 � � x 1 � � 1 � = x 2 x 1 = | x 1 x 2 | e i θ = t (1 − t ) e i θ pf. � , 0 0 x 2 x 2 � t (1 − t ) e i θ : 0 ≤ t ≤ 1 , θ ∈ R } = { z ∈ C : | z | ≤ 1 ⇒ W ( J 2 ) = { 2 } Hwa-Long Gau Inner Functions of Numerical Contractions 3/29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend