distortion and distribution of sets under inner functions
play

Distortion and Distribution of Sets under Inner Functions Artur - PowerPoint PPT Presentation

Distortion and Distribution of Sets under Inner Functions Artur Nicolau Universitat Aut` onoma de Barcelona Inner Functions Definition f : D D analytic is inner if | lim r 1 f ( r ) | = 1 , a.e. D . Inner Functions


  1. Distortion and Distribution of Sets under Inner Functions Artur Nicolau Universitat Aut` onoma de Barcelona

  2. Inner Functions Definition f : D → D analytic is inner if | lim r → 1 f ( r ξ ) | = 1 , a.e. ξ ∈ ∂ D .

  3. Inner Functions Definition f : D → D analytic is inner if | lim r → 1 f ( r ξ ) | = 1 , a.e. ξ ∈ ∂ D . Invariant Subspaces n ≥ 0 a n z n : � | a n | 2 < ∞} . H 2 = { g ( z ) = � S : H 2 → H 2 g ( z ) �→ z g ( z )

  4. Inner Functions Definition f : D → D analytic is inner if | lim r → 1 f ( r ξ ) | = 1 , a.e. ξ ∈ ∂ D . Invariant Subspaces n ≥ 0 a n z n : � | a n | 2 < ∞} . H 2 = { g ( z ) = � S : H 2 → H 2 g ( z ) �→ z g ( z ) Theorem (Beurling, 49) M subspace of H 2 . ⇒ M = f H 2 for some f inner. SM ⊆ M ⇐

  5. Motivation Localization

  6. Motivation Localization g : D → C analytic Ω = connected component of g − 1 ( D ) ϕ : D → Ω conformal f = g ◦ ϕ Crutial Case: f inner

  7. Motivation Localization g : D → C analytic Ω = connected component of g − 1 ( D ) ϕ : D → Ω conformal f = g ◦ ϕ Crutial Case: f inner

  8. Dynamics Ω � C simply connected g : Ω → Ω analytic ϕ : D → Ω conformal Then, f = ϕ − 1 ◦ g ◦ ϕ : D → D Dynamics of g ← → Dynamics of f .

  9. Dynamics Ω � C simply connected g : Ω → Ω analytic ϕ : D → Ω conformal Then, f = ϕ − 1 ◦ g ◦ ϕ : D → D Dynamics of g ← → Dynamics of f . If g : C → C ∞ meromorphic and Ω is an invariant Fatou component, then f is inner. (Baranski, Fagella, Jarque, Karpinska)

  10. Examples f : D → D inner if | lim r → 1 f ( r ξ ) | = 1 a.e. ξ ∈ ∂ D .

  11. Examples f : D → D inner if | lim r → 1 f ( r ξ ) | = 1 a.e. ξ ∈ ∂ D . Finite Blaschke products. Given z 1 , . . . , z N ∈ D N z − z k � f ( z ) = 1 − z k z , z ∈ D . k =1

  12. Examples f : D → D inner if | lim r → 1 f ( r ξ ) | = 1 a.e. ξ ∈ ∂ D . Finite Blaschke products. Given z 1 , . . . , z N ∈ D N z − z k � f ( z ) = 1 − z k z , z ∈ D . k =1 Infinite Blaschke products. Given { z k } ⊂ D , � (1 − | z k | ) < + ∞ , ∞ − z k z − z k � B ( z ) = 1 − z k z , z ∈ D . | z k | k =1

  13. Examples f : D → D inner if | lim r → 1 f ( r ξ ) | = 1 a.e. ξ ∈ ∂ D . Finite Blaschke products. Given z 1 , . . . , z N ∈ D N z − z k � f ( z ) = 1 − z k z , z ∈ D . k =1 Infinite Blaschke products. Given { z k } ⊂ D , � (1 − | z k | ) < + ∞ , ∞ − z k z − z k � B ( z ) = 1 − z k z , z ∈ D . | z k | k =1 Singular Inner Functions. Given a positive singular measure µ on ∂ D , � ξ + z � ˆ S µ ( z ) = exp − ξ − z d µ ( ξ ) , z ∈ D . ∂ D

  14. Examples f : D → D inner if | lim r → 1 f ( r ξ ) | = 1 a.e. ξ ∈ ∂ D . Finite Blaschke products. Given z 1 , . . . , z N ∈ D N z − z k � f ( z ) = 1 − z k z , z ∈ D . k =1 Infinite Blaschke products. Given { z k } ⊂ D , � (1 − | z k | ) < + ∞ , ∞ − z k z − z k � B ( z ) = 1 − z k z , z ∈ D . | z k | k =1 Singular Inner Functions. Given a positive singular measure µ on ∂ D , � ξ + z � ˆ S µ ( z ) = exp − ξ − z d µ ( ξ ) , z ∈ D . ∂ D Theorem f inner. Then, f = BS µ .

  15. Singularities f inner. Consider f : ∂ D → ∂ D defined as f ( ξ ) = lim r → 1 f ( r ξ ) , a.e. ξ ∈ ∂ D .

  16. Singularities f inner. Consider f : ∂ D → ∂ D defined as f ( ξ ) = lim r → 1 f ( r ξ ) , a.e. ξ ∈ ∂ D . Definition Sing ( f ) = { ξ ∈ ∂ D : f does not extend analytically at ξ } = { z n } ′ ∪ spt µ if f = B { z n } S µ

  17. Singularities f inner. Consider f : ∂ D → ∂ D defined as f ( ξ ) = lim r → 1 f ( r ξ ) , a.e. ξ ∈ ∂ D . Definition Sing ( f ) = { ξ ∈ ∂ D : f does not extend analytically at ξ } = { z n } ′ ∪ spt µ if f = B { z n } S µ 0 − 1 Law Let ξ ∈ ∂ D . Either (a) There exists an arc J, ξ ∈ J, such that f extends analytically across J or (b) For every arc J, ξ ∈ J, f ( J \ { ξ } ) = ∂ D .

  18. Distortion Definition For z ∈ D , 1 − | z | 2 w z ( E ) = 1 ˆ | ξ − z | 2 | d ξ | , E ⊂ ∂ D . 2 π E w z = harmonic measure from z w 0 = Lebesgue measure on ∂ D

  19. Distortion Definition For z ∈ D , 1 − | z | 2 w z ( E ) = 1 ˆ | ξ − z | 2 | d ξ | , E ⊂ ∂ D . 2 π E w z = harmonic measure from z w 0 = Lebesgue measure on ∂ D Theorem (Lowner) f inner, z ∈ D . Then, w z ( f − 1 ( E )) = w f ( z ) ( E ) , E ⊂ ∂ D . If z = f ( z ) = 0 , | f − 1 ( E ) | = | E | , E ⊂ ∂ D .

  20. Distortion Definition For 0 < α < 1 and z ∈ D , w z ( J k ) α : E ⊂ ∪ J k } � M α ( w z )( E ) = inf { E ⊂ ∂ D If z = 0, M α ( w 0 ) ≡ Hausdorff content

  21. Distortion Definition For 0 < α < 1 and z ∈ D , w z ( J k ) α : E ⊂ ∪ J k } � M α ( w z )( E ) = inf { E ⊂ ∂ D If z = 0, M α ( w 0 ) ≡ Hausdorff content Theorem (Fernandez, Pestana, 92) f inner, 0 < α < 1 and z ∈ D . Then M α ( w z )( f − 1 ( E )) ≥ C α M α ( w f ( z ) ( E )) , E ⊂ ∂ D , (and, consequently, dim f − 1 ( E ) ≥ dim E , for any E ⊂ ∂ D ) If z = f ( z ) = 0 , M α ( f − 1 ( E )) ≥ C α M α ( E ) ,E ⊂ ∂ D .

  22. Distortion with respect to a boundary point Definition f : D → D analytic and p ∈ ∂ D . We say | f ′ ( p ) | < ∞ if f ( p ) = lim r → 1 f ( rp ) ∈ ∂ D exists (p is a Boundary Fatou point) and f ( z ) − f ( p ) f ′ ( p ) = lim exists. z − p Γ ∋ z → p Otherwise | f ′ ( p ) | = ∞ .

  23. Distortion with respect to a boundary point Definition f : D → D analytic and p ∈ ∂ D . We say | f ′ ( p ) | < ∞ if f ( p ) = lim r → 1 f ( rp ) ∈ ∂ D exists (p is a Boundary Fatou point) and f ( z ) − f ( p ) f ′ ( p ) = lim exists. z − p Γ ∋ z → p Otherwise | f ′ ( p ) | = ∞ . Definition | d ξ | ˆ If p ∈ ∂ D , µ p ( E ) = | ξ − p | 2 , E ⊂ ∂ D . E

  24. Distortion with respect to a boundary point Definition f : D → D analytic and p ∈ ∂ D . We say | f ′ ( p ) | < ∞ if f ( p ) = lim r → 1 f ( rp ) ∈ ∂ D exists (p is a Boundary Fatou point) and f ( z ) − f ( p ) f ′ ( p ) = lim exists. z − p Γ ∋ z → p Otherwise | f ′ ( p ) | = ∞ . Definition | d ξ | ˆ If p ∈ ∂ D , µ p ( E ) = | ξ − p | 2 , E ⊂ ∂ D . E J ⊂ ∂ D arc. µ p ( J ) < ∞ ⇐ ⇒ p / ∈ J . µ p measures the size of E and the distribution of E around p . | J k | E = ∪ J k . Then, µ p ( E ) < ∞ ⇐ ⇒ � dist( p , J k ) 2 < ∞ .

  25. Distortion with respect to a boundary point | d ξ | ˆ µ p ( E ) = | ξ − p | 2 , E ⊂ ∂ D . E

  26. Distortion with respect to a boundary point | d ξ | ˆ µ p ( E ) = | ξ − p | 2 , E ⊂ ∂ D . E Theorem (Levi, N., Soler, 18) f inner, p ∈ ∂ D a BFP. Then, µ p ( f − 1 ( E )) = | f ′ ( p ) | µ f ( p ) ( E ) , E ⊂ ∂ D .

  27. Distortion with respect to a boundary point | d ξ | ˆ µ p ( E ) = | ξ − p | 2 , E ⊂ ∂ D . E Theorem (Levi, N., Soler, 18) f inner, p ∈ ∂ D a BFP. Then, µ p ( f − 1 ( E )) = | f ′ ( p ) | µ f ( p ) ( E ) , E ⊂ ∂ D . Extreme cases.

  28. Distortion with respect to a boundary point | d ξ | ˆ µ p ( E ) = | ξ − p | 2 , E ⊂ ∂ D . E Theorem (Levi, N., Soler, 18) f inner, p ∈ ∂ D a BFP. Then, µ p ( f − 1 ( E )) = | f ′ ( p ) | µ f ( p ) ( E ) , E ⊂ ∂ D . Extreme cases. Definition M α ( µ p )( E ) = inf { � µ p ( I j ) α : E \ { p } ⊂ ∪ I j } 0 < α < 1 and p ∈ ∂ D , Theorem (Levi, N., Soler, 18) f inner, p ∈ ∂ D a BFP, 0 < α < 1 . Then, M α ( µ p )( f − 1 ( E )) ≥ C α | f ′ ( p ) | α M α ( µ f ( p ) )( E ) , E ⊂ ∂ D .

  29. Denjoy-Wolff Theorem Theorem (Denjoy-Wolff) f : D → D analytic, not automorphism. Then, there exists p ∈ D such that f n = f ◦ · · · ◦ f − n →∞ p unif. on compacts of D . − − → Moreover, p ∈ D is the unique fixed point of f with | f ′ ( p ) | ≤ 1 .

  30. Denjoy-Wolff Theorem Theorem (Denjoy-Wolff) f : D → D analytic, not automorphism. Then, there exists p ∈ D such that f n = f ◦ · · · ◦ f − n →∞ p unif. on compacts of D . − − → Moreover, p ∈ D is the unique fixed point of f with | f ′ ( p ) | ≤ 1 . p ≡ DWFP Dynamics of f : ∂ D → ∂ D ?

  31. DWFP in D f inner with DWFP 0, not rotation. Lowner: | f − 1 ( E ) | = | E | for any E ⊂ ∂ D .

  32. DWFP in D f inner with DWFP 0, not rotation. Lowner: | f − 1 ( E ) | = | E | for any E ⊂ ∂ D . Theorem (Poincar´ e Recurrence Theorem) f inner, f (0) = 0 . Then lim inf n →∞ | f n ( ξ ) − ξ | = 0 a.e. ξ ∈ ∂ D . Theorem (Ergodic Theorem) Let f inner with f (0) = 0 . Then ( f , | | ) is ergodic and # { 1 ≤ k ≤ n : f k ( ξ ) ∈ J } lim n →∞ = | J | for any J ⊂ ∂ D . n

  33. Shrinking Targets Notation: J ( ξ 0 , r ) = { ξ ∈ ∂ D : | ξ − ξ 0 | < r } .

  34. Shrinking Targets Notation: J ( ξ 0 , r ) = { ξ ∈ ∂ D : | ξ − ξ 0 | < r } . Theorem (Fern´ andez, Meli´ an, Pestana, 07) f inner, not automorphism, with f (0) = 0 . Fix ξ 0 ∈ ∂ D and r k ≥ 0 decreasing. (a) If � r k = ∞ , then lim n →∞ # { 1 ≤ k ≤ n : f k ( ξ ) ∈ J ( ξ 0 , r k ) } = 1 a.e. ξ ∈ ∂ D . � n k =1 r k (b) If � r k < ∞ , then lim inf n →∞ | f n ( ξ ) − ξ 0 | ≥ 1 a.e. ξ ∈ ∂ D . r n

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend