inflationary non gaussianity theoretical predictions and
play

Inflationary non-Gaussianity: theoretical predictions and - PowerPoint PPT Presentation

Inflationary non-Gaussianity: theoretical predictions and observational consequences Gabriel Jung, thesis defense Supervisor: Bartjan van Tent 22 May 2018, at the Laboratoire de Physique Th eorique Gabriel Jung - LPT Orsay 22 May 2018 1


  1. Inflationary non-Gaussianity: theoretical predictions and observational consequences Gabriel Jung, thesis defense Supervisor: Bartjan van Tent 22 May 2018, at the Laboratoire de Physique Th´ eorique Gabriel Jung - LPT Orsay 22 May 2018 1 / 23

  2. Inflation History of our universe Source: ESA Inflation ( Starobinsky, 1980; Guth, 1981 ) • Period of fast and accelerated expansion in the very early universe • Energy content of the universe dominated by a scalar field • Solves several issues of the standard Big Bang theory Gabriel Jung - LPT Orsay 22 May 2018 2 / 23

  3. Cosmic Microwave Background (CMB) CMB (observed in 1964 by Penzias and Wilson) • Relic radiation emitted 380000 years after the Big Bang • Blackbody spectrum at a temperature of 2 . 725 ± 0 . 001 K • Coming from all parts of the sky with a uniform temperature • Observational window on the primordial universe Gabriel Jung - LPT Orsay 22 May 2018 3 / 23

  4. Cosmic Microwave Background (CMB) CMB (observed in 1964 by Penzias and Wilson) • Relic radiation emitted 380000 years after the Big Bang • Blackbody spectrum at a temperature of 2 . 725 ± 0 . 001 K • Coming from all parts of the sky with a uniform temperature • Observational window on the primordial universe • Precision cosmology era: (WMAP + Planck) Measurements of relative temperature fluctuations of order 10 − 5 CMB seen by Planck Gabriel Jung - LPT Orsay 22 May 2018 3 / 23

  5. Perturbations • Primordial fluctuations → Large-scale structures present now • Explained by inflation: scalar field quantum fluctuations + expansion • Single-field inflation → perturbations are frozen on super-Hubble scales → simple link between inflationary perturbations and CMB anisotropies Comoving scales Inflation After Inflation Hubble length Perturbations frozen horizon crossing horizon re - entry Time Gabriel Jung - LPT Orsay 22 May 2018 4 / 23

  6. Perturbations First-order perturbation theory: • Many inflation models predict an almost Gaussian and almost scale-invariant distribution of the perturbations ⇒ We only need the power spectrum (Fourier transform of the two-point correlator): P s ∝ k n s − 1 with n s = 0 . 968 ± 0 . 006 (Planck, 1502.02114 ) Gabriel Jung - LPT Orsay 22 May 2018 4 / 23

  7. Perturbations First-order perturbation theory: • Many inflation models predict an almost Gaussian and almost scale-invariant distribution of the perturbations ⇒ We only need the power spectrum (Fourier transform of the two-point correlator): P s ∝ k n s − 1 with n s = 0 . 968 ± 0 . 006 (Planck, 1502.02114 ) Second-order perturbation theory: Deviations from Gaussianity ⇒ Three point-correlation function ↔ bispectrum Parametrized by the amplitude parameter f NL Different sources: • At late times: extra-galactic and galactic foregrounds • Primordial ⇒ important to discriminate inflation models ⇒ Many different shapes to look for in the observational data Gabriel Jung - LPT Orsay 22 May 2018 4 / 23

  8. Plan 1. Non-Gaussianity in two-field inflation Jung & Van Tent (1611.09233) • Perturbations • Background description (slow-roll parameters) • Observables • The slow-roll approximation • Sum potentials • Monomial potentials 2. Non-Gaussianity in CMB observations Jung, Racine & Van Tent (to be published) • Binned bispectrum estimator • Galactic foregrounds: dust • CMB data analyses Gabriel Jung - LPT Orsay 22 May 2018 5 / 23

  9. Non-Gaussianity in two-field inflation

  10. Local non-Gaussianity • Gravitational potential: Φ = Φ L + f local (Φ 2 L − � Φ L � 2 ) NL a † (annihilation and creation operators) Φ L ∝ ˆ a + ˆ � Φ 2 L � 2 � ΦΦΦ � ≈ f local NL • Peaks in the squeezed configuration: one small ℓ and two large ℓ ’s • Planck (1502.01592) : f local = 0 . 8 ± 5 . 0 NL Gabriel Jung - LPT Orsay 22 May 2018 6 / 23

  11. Local non-Gaussianity • Gravitational potential: Φ = Φ L + f local (Φ 2 L − � Φ L � 2 ) NL a † (annihilation and creation operators) Φ L ∝ ˆ a + ˆ � Φ 2 L � 2 � ΦΦΦ � ≈ f local NL • Peaks in the squeezed configuration: one small ℓ and two large ℓ ’s • Planck (1502.01592) : f local = 0 . 8 ± 5 . 0 NL • Can be produced during multiple-field inflation ! Two kinds of perturbations which interact on super-Hubble scales : - Adiabatic: perturbations in the total energy density - Isocurvature: relative fluctuations between the different components • Long-wavelength formalism (Rigopoulos, Shellard and van Tent: astro-ph/0504508, Tzavara and van Tent: 1012.6027) Gabriel Jung - LPT Orsay 22 May 2018 6 / 23

  12. Local non-Gaussianity • Gravitational potential: Φ = Φ L + f local (Φ 2 L − � Φ L � 2 ) NL a † (annihilation and creation operators) Φ L ∝ ˆ a + ˆ � Φ 2 L � 2 � ΦΦΦ � ≈ f local NL • Peaks in the squeezed configuration: one small ℓ and two large ℓ ’s • Planck (1502.01592) : f local = 0 . 8 ± 5 . 0 NL • Can be produced during multiple-field inflation ! Two kinds of perturbations which interact on super-Hubble scales : - Adiabatic: perturbations in the total energy density - Isocurvature: relative fluctuations between the different components • Long-wavelength formalism (Rigopoulos, Shellard and van Tent: astro-ph/0504508, Tzavara and van Tent: 1012.6027) Green’s functions: • ¯ v 22 : isocurvature mode • ¯ v 12 : isocurvature contribution to adiabatic Important hypothesis : ¯ v 22 vanishes at the end of inflation Gabriel Jung - LPT Orsay 22 May 2018 6 / 23

  13. σ σ ϕ ϕ Multiple-field inflation Main motivation: many scalar fields in high-energy theories Gabriel Jung - LPT Orsay 22 May 2018 7 / 23

  14. Multiple-field inflation Main motivation: many scalar fields in high-energy theories Orthonormal basis • Two-field models: W ( φ, σ ) e 1 = ( e 1 φ , e 1 σ ) , e 2 = ( e 1 σ , − e 1 φ ) ⇒ Sufficient to study new effects Groot Nibbelink & van Tent: hep-ph/0011325 & 0107272 • Nice description of two-field infla- ˙ tion ⇒ Trajectory in field space φ √ e 1 φ = e 1 e 1 σ ˙ φ 2 + ˙ σ 2 σ • Time coordinate: number of e- σ ˙ √ e 1 σ = folds ˙ φ 2 + ˙ σ 2 e 1 ϕ ϕ Gabriel Jung - LPT Orsay 22 May 2018 7 / 23

  15. Multiple-field inflation Main motivation: many scalar fields in high-energy theories Orthonormal basis • Two-field models: W ( φ, σ ) e 1 = ( e 1 φ , e 1 σ ) , e 2 = ( e 1 σ , − e 1 φ ) ⇒ Sufficient to study new effects Groot Nibbelink & van Tent: hep-ph/0011325 & 0107272 • Nice description of two-field infla- ˙ tion ⇒ Trajectory in field space φ √ e 1 φ = e 1 e 1 σ ˙ φ 2 + ˙ σ 2 σ • Time coordinate: number of e- σ ˙ √ e 1 σ = folds ˙ φ 2 + ˙ σ 2 e 1 ϕ ϕ Slow-roll parameters ˙ φ 2 + ˙ ˙ σ 2 η � = φ ˙ ¨ η ⊥ = ¨ σ ˙ H φ +¨ σ ˙ σ φ ˙ σ +¨ φ ǫ = − H = σ 2 − ǫ 2 ˙ ˙ φ 2 + ˙ φ 2 + ˙ σ 2 • ǫ and η � , similar to the usual ǫ and η of single-field inflation • η ⊥ : perpendicular ( e 2 ) acceleration, purely multiple-field effect ˙ v 12 = 2 η ⊥ ¯ Link adiabatic/isocurvature perturbations: ¯ v 22 Gabriel Jung - LPT Orsay 22 May 2018 7 / 23

  16. Observables Spectral index: single-field formula + multiple-field correction ¯ v 12 � � n s − 1 = − 4 ǫ ∗ − 2 η � v 12 ( ǫ ∗ + η � ∗ + ˜ 4 η ⊥ ∗ − ∗ − 2¯ W 22 ∗ ) 1 + (¯ v 12 ) 2 Subscript ∗ : evaluated at horizon-crossing f NL = 0 . 8 ± 5 . 0 ns = 0 . 968 ± 0 . 006 Gabriel Jung - LPT Orsay 22 May 2018 8 / 23

  17. Observables Spectral index: single-field formula + multiple-field correction ¯ v 12 � � n s − 1 = − 4 ǫ ∗ − 2 η � v 12 ( ǫ ∗ + η � ∗ + ˜ 4 η ⊥ ∗ − ∗ − 2¯ W 22 ∗ ) 1 + (¯ v 12 ) 2 Subscript ∗ : evaluated at horizon-crossing Non-Gaussianity v 12 ) 2 − 6 − 2(¯ 5 f NL = v 12 ) 2 ] 2 ( g iso + g sr + g int ) [1 + (¯ v 22 ) 2 + ¯ g iso = ( ǫ + η � )(¯ v 22 ˙ ¯ v 22 g sr = − ǫ ∗ + η � + η ⊥ ∗ − χ ∗ + η ⊥ ∗ ¯ v 12 − 3 � � ∗ ǫ ∗ + η � ∗ v 2 2¯ 2 2 v 12 ¯ 12 � t d t ′ � v 22 ) 2 + ( ǫ + η � )¯ 2( η ⊥ ) 2 (¯ v 22 ˙ v 22 + (˙ v 22 ) 2 g int = − ¯ ¯ t ∗ v 22 + 9 η ⊥ ˙ f NL = 0 . 8 ± 5 . 0 − G 13 ( t , t ′ )¯ � v 22 (Ξ¯ v 22 ) ¯ ns = 0 . 968 ± 0 . 006 Gabriel Jung - LPT Orsay 22 May 2018 8 / 23

  18. Observables Spectral index: single-field formula + multiple-field correction v 12 ¯ � � n s − 1 = − 4 ǫ ∗ − 2 η � v 12 ( ǫ ∗ + η � ∗ + ˜ 4 η ⊥ ∗ − ∗ − 2¯ W 22 ∗ ) 1 + (¯ v 12 ) 2 Subscript ∗ : evaluated at horizon-crossing Non-Gaussianity v 12 ) 2 − 6 − 2(¯ 5 f NL = v 12 ) 2 ] 2 ( g iso + g sr + g int ) [1 + (¯ g iso : pure isocurvature term, set to 0 at the end of inflation g sr = − ǫ ∗ + η � + η ⊥ ∗ − χ ∗ + η ⊥ ∗ ¯ v 12 − 3 � � ∗ ǫ ∗ + η � ∗ v 2 2¯ 2 2 v 12 ¯ 12 � t d t ′ � v 22 ) 2 + ( ǫ + η � )¯ 2( η ⊥ ) 2 (¯ v 22 ˙ v 22 + (˙ v 22 ) 2 g int = − ¯ ¯ t ∗ v 22 + 9 η ⊥ ˙ f NL = 0 . 8 ± 5 . 0 − G 13 ( t , t ′ )¯ � v 22 (Ξ¯ v 22 ) ¯ ns = 0 . 968 ± 0 . 006 Gabriel Jung - LPT Orsay 22 May 2018 8 / 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend