in proton nucleus collisions
play

in proton-nucleus collisions Andrey Polyanskiy (FZ Jlich/ITEP - PowerPoint PPT Presentation

Mitglied der Helmholtz-Gemeinschaft Measurement of the in-medium -meson width in proton-nucleus collisions Andrey Polyanskiy (FZ Jlich/ITEP Moscow) for the ANKE collaboration Hadron 2011, Munich, June 14 th 2011 Scope of the talk Physics


  1. Mitglied der Helmholtz-Gemeinschaft Measurement of the in-medium Φ-meson width in proton-nucleus collisions Andrey Polyanskiy (FZ Jülich/ITEP Moscow) for the ANKE collaboration Hadron 2011, Munich, June 14 th 2011

  2. Scope of the talk  Physics motivation  Experiment at ANKE  Data analysis  Results and discussion 2

  3. Φ in free space  Meson spectral function: Γ 0 / 2 S ( m )= 1 2 , π 2 +(Γ 0 / 2 ) ( m − m 0 ) m 0 – pole mass, Γ 0 – meson width m 0 = 1.0195 GeV (PDG 2008) Γ 0 = 4.26 MeV  Φ is a long-lived meson: λ dec = ħc/Γ 0 = 44 fm >> R(Au) 3

  4. Φ in nuclear matter ∗  Meson spectral function:  (Γ 0 − 2Im U opt )/ 2 ∗ ( m )= 1 S 2 , π 2 +((Γ 0 − 2ImU opt )/ 2 ) ( m −( m 0 + ReU opt )) ∗   A general picture of numerous studies in different approaches, e.g. effective Lagrangians and QCD sum rules: - mass modification is small - main medium effect on the Ф is significant increase of its width up to an order of magnitude 4

  5. Methods of Φ in-medium width measurement I  Study of the meson spectral function – measurement of low momentum Φ's: - Φ→e + e - (BR = 3·10 -4 ) - Φ→K + K - (BR = 0.49, K - FSI, hadronic potential)  Experiments: KEK-PS-E325: Reaction: pA→ΦX, Φ→e + e - p-Energy: 12 GeV Targets: C, Cu Result: Γ*/Γ 0 = 3.6, Γ* ≈ 11 MeV for <p Φ > = 1 GeV/c Δm/m 0 = -3.4% at ρ=ρ 0 R.Muto et al. , PRL 98 (2007) 042501 5

  6. Methods of Φ in-medium width measurement II  Attenuation measurement of the Φ flux – analysis of the target mass dependence for the Φ production cross section The Φ survival probability D in the nucleus matter rest frame: D = exp ( − ∫ z ) , ∗ ( p Φ , ρ( r )) m 0 dl Γ ∞ ρ(r) – local nuclear density. p Φ  Experiments: JLab/CLAS: COSY/ANKE: Spring-8/LEPS: Reaction: γA→ΦX, Φ→e + e - Reaction: pA→ΦX, Φ→K + K - Reaction: γA→ΦX, Φ→K + K - γ-Energy: up to 4 GeV p-Energy: 2.83 GeV ( ε NN ≈76MeV ) γ-Energy: 1.5 - 2.4 GeV Targets: 2 H, C, Ti-Fe, Pb Targets: Li, C, Al, Cu Targets: C, Cu, Ag, Au Result: σ* ΦN = 16-70 mb Result: σ* ΦN = 35 +17 -11 mb Result: Γ * = 33-50 MeV Γ* ≈ 100 MeV for <p Φ > = 1.1 GeV/c for <p Φ > = 1.8 GeV/c T. Ishikawa et al. , M.H. Wood et al. , A.Polyanskiy et al. , PLB 608 (2005) 215 PRL 105 (2010) 112301 PLB 695 (2011) 74 * (ρ 0 )= p Φ * Γ lab E σ Φ N ρ 0 In low density approximation: 6

  7. ANKE – forward angle magnetic spectrometer at internal target position of COSY Pd – positive detector system Nd Nd – negative detector system Fd – forward detector system Fd Φ momentum (0.6 ― 1.6) GeV/c, and angular range: 0 o ≤ Θ Φ ≤ 8 o Pd 7

  8. Analysis: K + selection  Delayed Veto Technique  TOF Stop-Start w/o delayed veto delayed 8

  9. Analysis: Φ/K + K - pairs identification C Φ pA→ΦX pA→K + K - X “+” background Au 7000-10000 Φ's for each target (C, Cu, Ag Au) 9

  10. A-dependence of Φ production cross section  A-dependence in the form: A A T A =   R = T A   = 12 T A – nuclear transparency ratio N C T C A A      Absolute and relative normalization of the Φ production cross section – use of the know pion data: relative normalization: C =  12  A A C A A       C = N  N    π + : p = 0.5 GeV/c, θ ~ 0 0 A α π = 0.38 +/- 0.02 C A C   N  N      J. Papp et al., Phys. Rev. Lett. 34 (1975) 601; V. V. Abaev et al., J. Phys. G 14 (1988) 903; Yu. T. Kiselev et al., Preprint ITEP 56-96, Moscow (1996). 10

  11. Transparency ratio: experiment ANKE(preliminary) 11

  12. Transparency ratio: experiment and models Valencia/E.Oset et al. ANKE(preliminary) MC & Chiral Unitary Approach D. Cabrera et al. , NPA 733 (2004) 130 Prediction: 28 MeV for Φ at rest for ρ = ρ 0 V.Magas et al ., PRC 71 (2005) 065202; L.Roca (private 12 communication)

  13. Transparency ratio: experiment and models Moscow/E.Paryev Valencia/E.Oset et al. ANKE(preliminary) MC & Chiral Unitary Nuclear Spectral Function Approach Approach V.Magas et al ., PRC E.Paryev, J.Phys. G 71 (2005) 065202; 36 (2009) 015103 L.Roca (private 13 communication)

  14. Transparency ratio: experiment and models Moscow/E.Paryev Rossendorf/ Valencia/E.Oset et al. ANKE(preliminary) MC & Chiral Unitary Nuclear Spectral Function B.Kämpfer et al. Approach Approach BUU H.Schade, B.Kämpfer V.Magas et al ., PRC E.Paryev, J.Phys. G (private communication); 71 (2005) 065202; 36 (2009) 015103 cf. PRC 81 (2010) 034902: L.Roca (private 14 communication)

  15. Transparency ratio: experiment and models Moscow/E.Paryev Rossendorf/ Valencia/E.Oset et al. ANKE(preliminary) MC & Chiral Unitary Nuclear Spectral Function B.Kämpfer et al. Approach Approach BUU Relevant features for models: • forward acceptance • two-step production processes • σ pn→pnΦ /σ pp→ppΦ ≈ 4 H.Schade, B.Kämpfer V.Magas et al ., PRC E.Paryev, J.Phys. G (private communication); 71 (2005) 065202; 36 (2009) 015103 cf. PRC 81 (2010) 034902: L.Roca (private 15 communication)

  16. In-medium width Γ Φ and σ * ΦN cross section (preliminary) lab (ρ 0 )= p Φ * Γ Φ E σ Φ N ρ 0 LDA: Γ Φ lab ≈ 33-50 MeV ( <p Φ > = 1.1 GeV/c, ρ 0 = 0.16 fm -3 ) A.Polyanskiy et al. , PLB 695 (2011) 74 16

  17. Double differential cross section of Φ production (preliminary) Excess in low momentum part + common systematics ~ 20 % 17

  18. In-medium width Γ Φ and σ * ΦN cross section (preliminary) lab ≈ 45 MeV and/or σ * for p Φ > 1.1 GeV/c Γ Φ Φ N ≈ 17 mb 18

  19. Summary Momentum dependence of the Φ-meson production under the forward angles has been studied at ANKE:  Large in-medium Φ width is extracted from high momentum part of spectrum  Preliminary differential cross sections are not completely reproduced by current model calculations in low momentum part 19

  20. Thank You! 20

  21. Extra Slides 21

  22. Invariant mass spectra for 6 momentum bins 22

  23. Comparison with three model calculations → Φ in-medium width, and … Relevant features: model A • two-step production • σ pn→pnΦ /σ pp→ppΦ ≈ 4 R • forward acceptance model C model B A) V.Magas et al., PRC 71, 065202 (2005): MC & Chiral unitary approach B) E.Paryev, J.Phys.G. 36 (2009) 015103: Nuclear spectral function C) H. Schade, B. Kaempfer (private communication) (cf. PRC 81 (2010) 034902): BUU-Rossendorf lab ≈ 33-50 MeV ( <p Φ > = 1.1 GeV/c, ρ 0 = 0.16 fm -3 ) Γ Φ A.Polyanskiy et al. , PLB 695 (2011) 74 23

  24. BUU-Rossen- dorf (prelimi- nary) B. Kaempfer & H. Schade 24

  25. BUU-Rossendorf (preliminary) 25

  26. … its momentum dependence (preliminary) BUU/Rossendorf(preliminary): Au R including secondary production processes only primary production 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend