implementing discrete approximations to continuous
play

Implementing discrete approximations to continuous mixture - PowerPoint PPT Presentation

Implementing discrete approximations to continuous mixture distributions Christian R over Department of Medical Statistics University Medical Center G ottingen December 5, 2014 C. R over Implementing mixture approximations December


  1. Implementing discrete approximations to continuous mixture distributions Christian R¨ over Department of Medical Statistics University Medical Center G¨ ottingen December 5, 2014 C. R¨ over Implementing mixture approximations December 5, 2014 1 / 31

  2. Overview mixture distributions meta analysis example discrete ‘grid’ approximations design strategy / algorithm example application C. R¨ over Implementing mixture approximations December 5, 2014 2 / 31

  3. Mixture distributions mixture distribution: a convex combination of “component” distributions “a distribution whose parameters are random variables” (“conditional”) distribution with density p ( y | x ) “parameter” x follows a distribution p ( x ) � marginal distribution of y is p ( y ) = X p ( y | x ) d p ( x ) x discrete: p ( y ) = � i p ( y | x i ) p ( x i ) ubiquitous in many applications Student- t distribution negative binomial distribution marginal distributions . . . C. R¨ over Implementing mixture approximations December 5, 2014 3 / 31

  4. Meta analysis Context: random-effects meta-analysis # 1 # 2 # 3 # 4 have: estimates y i # 5 standard errors σ i # 6 # 7 want: combined estimate ˆ Θ 120 140 160 180 200 220 240 effect Θ C. R¨ over Implementing mixture approximations December 5, 2014 4 / 31

  5. Meta analysis Context: random-effects meta-analysis # 1 # 2 # 3 # 4 have: estimates y i # 5 standard errors σ i # 6 # 7 want: combined estimate ˆ Θ 120 140 160 180 200 220 240 effect Θ C. R¨ over Implementing mixture approximations December 5, 2014 4 / 31

  6. Meta analysis Context: random-effects meta-analysis # 1 # 2 # 3 # 4 have: estimates y i # 5 standard errors σ i # 6 # 7 want: combined estimate ˆ Θ Θ 120 140 160 180 200 220 240 effect Θ C. R¨ over Implementing mixture approximations December 5, 2014 4 / 31

  7. Meta analysis Context: random-effects meta-analysis # 1 # 2 # 3 # 4 have: estimates y i # 5 standard errors σ i # 6 # 7 want: combined estimate ˆ Θ Θ 120 140 160 180 200 220 240 effect Θ C. R¨ over Implementing mixture approximations December 5, 2014 4 / 31

  8. Meta analysis The random effects model assume: 2 + τ 2 ) y i ∼ Normal (Θ , σ i C. R¨ over Implementing mixture approximations December 5, 2014 5 / 31

  9. Meta analysis The random effects model assume: 2 + τ 2 ) y i ∼ Normal (Θ , σ i ingredients: Data : Parameters : estimates y i true parameter value Θ standard errors σ i heterogeneity τ C. R¨ over Implementing mixture approximations December 5, 2014 5 / 31

  10. Meta analysis The random effects model assume: 2 + τ 2 ) y i ∼ Normal (Θ , σ i ingredients: Data : Parameters : estimates y i true parameter value Θ standard errors σ i heterogeneity τ C. R¨ over Implementing mixture approximations December 5, 2014 5 / 31

  11. Meta analysis The random effects model assume: 2 + τ 2 ) y i ∼ Normal (Θ , σ i ingredients: Data : Parameters : estimates y i true parameter value Θ standard errors σ i heterogeneity τ C. R¨ over Implementing mixture approximations December 5, 2014 5 / 31

  12. Meta analysis The random effects model assume: 2 + τ 2 ) y i ∼ Normal (Θ , σ i ingredients: Data : Parameters : estimates y i true parameter value Θ standard errors σ i heterogeneity τ C. R¨ over Implementing mixture approximations December 5, 2014 5 / 31

  13. Meta analysis The random effects model assume: 2 + τ 2 ) y i ∼ Normal (Θ , σ i ingredients: Data : Parameters : estimates y i true parameter value Θ standard errors σ i heterogeneity τ Θ ∈ R of primary interest τ ∈ R + nuisance parameter: account for (potential) incompatibility C. R¨ over Implementing mixture approximations December 5, 2014 5 / 31

  14. Meta analysis example Motivation: background 0.06 # 1 0.05 # 2 marginal posterior p ( Θ ) # 3 0.04 # 4 0.03 # 5 # 6 0.02 # 7 0.01 Θ 0.00 120 140 160 180 200 220 240 140 160 180 200 effect Θ effect Θ estimation: via marginal posterior distribution of parameter Θ C. R¨ over Implementing mixture approximations December 5, 2014 6 / 31

  15. Meta analysis example Motivation: two-parameter model & marginals 0.06 190 0.05 0.05 180 marginal posterior p ( Θ ) marginal posterior p ( τ ) 95% 0.04 0.04 170 effect Θ 0.03 0.03 160 0.02 0.02 150 50% 90% 0.01 0.01 140 99% 0.00 0.00 130 0 10 20 30 40 0 20 40 60 80 140 160 180 200 heterogeneity τ heterogeneity τ effect Θ two unknowns: joint & marginal posterior distributions C. R¨ over Implementing mixture approximations December 5, 2014 7 / 31

  16. Meta analysis example Motivation: two-parameter model, conditionals & marginals here: easy to derive one of the marginal s: p ( τ | y ) and conditional posteriors p (Θ | τ, y ) p ( τ | y ) = . . . (. . . function of y i , σ i ,. . . ) p (Θ | τ, y ) = Normal ( µ = f 1 ( τ ) , σ = f 2 ( τ )) but main interest in other marginal: p (Θ | y ) � p (Θ | y ) = p (Θ | τ, y ) p ( τ | y ) d τ is a mixture distribution � �� � � �� � conditional marginal C. R¨ over Implementing mixture approximations December 5, 2014 8 / 31

  17. Meta analysis example Motivation: two-parameter model, conditionals & marginals 190 0.05 180 marginal posterior p ( τ ) 0.04 170 effect Θ 0.03 160 0.02 150 0.01 140 130 0.00 0 10 20 30 40 0 10 20 30 40 50 heterogeneity τ heterogeneity τ 0.10 0.06 conditional posterior p ( Θ | τ i ) 0.08 0.05 marginal posterior p ( Θ |y ) 0.04 0.06 0.03 0.04 0.02 0.02 0.01 0.00 0.00 130 140 150 160 170 180 190 130 140 150 160 170 180 190 effect Θ effect Θ C. R¨ over Implementing mixture approximations December 5, 2014 9 / 31

  18. Meta analysis example Motivation: two-parameter model, conditionals & marginals 190 0.05 conditional mean + sd 180 marginal posterior p ( τ ) 0.04 170 effect Θ 0.03 conditional mean 160 0.02 150 0.01 140 conditional mean − sd 130 0.00 0 10 20 30 40 0 10 20 30 40 50 heterogeneity τ heterogeneity τ 0.10 0.06 conditional posterior p ( Θ | τ i ) 0.08 0.05 marginal posterior p ( Θ |y ) 0.04 0.06 0.03 0.04 0.02 0.02 0.01 0.00 0.00 130 140 150 160 170 180 190 130 140 150 160 170 180 190 effect Θ effect Θ C. R¨ over Implementing mixture approximations December 5, 2014 9 / 31

  19. Meta analysis example Motivation: two -parameter model, conditionals & marginals τ 1 τ 1 190 0.05 180 marginal posterior p ( τ ) 0.04 170 effect Θ 0.03 160 0.02 150 0.01 140 130 0.00 0 10 20 30 40 0 10 20 30 40 50 heterogeneity τ heterogeneity τ 0.10 τ = τ 1 0.06 conditional posterior p ( Θ | τ i ) 0.08 0.05 marginal posterior p ( Θ |y ) 0.04 0.06 0.03 0.04 0.02 0.02 0.01 0.00 0.00 130 140 150 160 170 180 190 130 140 150 160 170 180 190 effect Θ effect Θ C. R¨ over Implementing mixture approximations December 5, 2014 9 / 31

  20. Meta analysis example Motivation: two -parameter model, conditionals & marginals τ 1 τ 2 τ 3 τ 4 τ 1 τ 2 τ 3 τ 4 190 0.05 180 marginal posterior p ( τ ) 0.04 170 effect Θ 0.03 160 0.02 150 0.01 140 130 0.00 0 10 20 30 40 0 10 20 30 40 50 heterogeneity τ heterogeneity τ 0.10 τ = τ 1 0.06 conditional posterior p ( Θ | τ i ) 0.08 0.05 marginal posterior p ( Θ |y ) 0.04 0.06 τ = τ 2 0.03 0.04 τ = τ 3 0.02 τ = τ 4 0.02 0.01 0.00 0.00 130 140 150 160 170 180 190 130 140 150 160 170 180 190 effect Θ effect Θ C. R¨ over Implementing mixture approximations December 5, 2014 9 / 31

  21. Meta analysis example Motivation: two -parameter model, conditionals & marginals τ 1 τ 2 τ 3 τ 4 τ 1 τ 2 τ 3 τ 4 190 0.05 180 marginal posterior p ( τ ) 0.04 170 effect Θ 0.03 160 0.02 150 0.01 140 130 0.00 0 10 20 30 40 0 10 20 30 40 50 heterogeneity τ heterogeneity τ 0.10 τ = τ 1 0.06 conditional posterior p ( Θ | τ i ) 0.08 0.05 marginal posterior p ( Θ |y ) 0.04 0.06 τ = τ 2 0.03 0.04 τ = τ 3 0.02 τ = τ 4 0.02 0.01 0.00 0.00 130 140 150 160 170 180 190 130 140 150 160 170 180 190 effect Θ effect Θ C. R¨ over Implementing mixture approximations December 5, 2014 9 / 31

  22. Meta analysis example Questions approximating the continuous mixture through a discrete set of points in τ . . . actual marginal: � p (Θ) = p (Θ | τ ) p ( τ ) d τ approximation: � p (Θ) ≈ p (Θ | τ i ) π i i Questions: how to set up the discrete grid of points? how well can we approximate? do we have a handle on accuracy? C. R¨ over Implementing mixture approximations December 5, 2014 10 / 31

  23. Meta analysis example Motivation: discretizing a mixture 0.10 τ 1 τ 2 τ 3 τ 4 τ = τ 1 190 conditional posterior p ( Θ | τ i ) 180 0.08 170 0.06 effect Θ τ = τ 2 160 0.04 τ = τ 3 150 τ = τ 4 0.02 140 0.00 130 0 10 20 30 40 130 140 150 160 170 180 190 heterogeneity τ effect Θ Note: conditional distributions p (Θ | τ, y ) are very different for τ 1 and τ 2 and rather similar for τ 3 and τ 4 . idea: may need fewer bins for larger τ values...? . . . bin spacing based on similarity / dissimilarity of conditionals? C. R¨ over Implementing mixture approximations December 5, 2014 11 / 31

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend