impact of neutral atoms on plasma turbulence in the
play

Impact of neutral atoms on plasma turbulence in the tokamak edge - PowerPoint PPT Presentation

Impact of neutral atoms on plasma turbulence in the tokamak edge region C. Wersal P . Ricci, F .D. Halpern, R. Jorge, J. Morales, P . Paruta, F . Riva Theory of Fusion Plasmas Joint Varenna-Lausanne International Workshop 29.08. - 02.09.


  1. Impact of neutral atoms on plasma turbulence in the tokamak edge region C. Wersal P . Ricci, F .D. Halpern, R. Jorge, J. Morales, P . Paruta, F . Riva Theory of Fusion Plasmas Joint Varenna-Lausanne International Workshop 29.08. - 02.09. 2016

  2. Introduction Model Two-point model Fueling Conclusions Physics at the periphery of a fusion plasma ◮ Toroidal limiter Limiter Core Edge SOL Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 2 / 37

  3. Introduction Model Two-point model Fueling Conclusions Physics at the periphery of a fusion plasma ◮ Toroidal limiter ◮ Radial transport due to turbulence Plasma Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 2 / 37

  4. Introduction Model Two-point model Fueling Conclusions Physics at the periphery of a fusion plasma ◮ Toroidal limiter ◮ Radial transport due to turbulence ◮ Parallel flow in the SOL to the limiter Plasma Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 2 / 37

  5. Introduction Model Two-point model Fueling Conclusions Physics at the periphery of a fusion plasma ◮ Toroidal limiter ◮ Radial transport due to turbulence ◮ Parallel flow in the SOL to the limiter ◮ Recombination on the limiter Plasma Neutrals Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 2 / 37

  6. Introduction Model Two-point model Fueling Conclusions Physics at the periphery of a fusion plasma ◮ Toroidal limiter ◮ Radial transport due to turbulence ◮ Parallel flow in the SOL to the limiter ◮ Recombination on Ionization the limiter ◮ Ionization of neutrals ◮ Density source ◮ Energy sink Plasma Neutrals Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 2 / 37

  7. Introduction Model Two-point model Fueling Conclusions Physics at the periphery of a fusion plasma ◮ Toroidal limiter ◮ Radial transport due to turbulence ◮ Parallel flow in the SOL to the limiter ◮ Recombination on Ionization the limiter ◮ Ionization of neutrals ◮ Density source ◮ Energy sink Plasma Neutrals Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 2 / 37

  8. Introduction Model Two-point model Fueling Conclusions Physics at the periphery of a fusion plasma ◮ Toroidal limiter ◮ Radial transport due to turbulence ◮ Parallel flow in the SOL to the limiter ◮ Recombination on Ionization the limiter ◮ Ionization of neutrals ◮ Density source ◮ Energy sink Plasma ◮ Recycling Neutrals Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 2 / 37

  9. Introduction Model Two-point model Fueling Conclusions Movie Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 3 / 37

  10. Introduction Model Two-point model Fueling Conclusions The tokamak scrape-off layer (SOL) ◮ Heat exhaust ◮ Confinement ◮ Impurities ◮ Fusion ash removal ◮ Fueling the plasma (recycling) Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 4 / 37

  11. Introduction Model Two-point model Fueling Conclusions 1. Modeling the periphery 2. A refined two-point model with neutrals 3. Gas puff fueling simulations Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 5 / 37

  12. Introduction Model Two-point model Fueling Conclusions Modeling the periphery Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 6 / 37

  13. Introduction Model Two-point model Fueling Conclusions Modeling the periphery ◮ High plasma collisionality, local Maxwellian Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 6 / 37

  14. Introduction Model Two-point model Fueling Conclusions Modeling the periphery ◮ High plasma collisionality, local Maxwellian ◮ d / dt ≪ ω ci , k 2 ⊥ ≫ k 2 � Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 6 / 37

  15. Introduction Model Two-point model Fueling Conclusions Modeling the periphery ◮ High plasma collisionality, local Maxwellian ◮ d / dt ≪ ω ci , k 2 ⊥ ≫ k 2 � ◮ Drift-reduced Braginskii equations n , Ω , v � e , v � , i , T e , T i Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 6 / 37

  16. Introduction Model Two-point model Fueling Conclusions Modeling the periphery ◮ High plasma collisionality, local Maxwellian ◮ d / dt ≪ ω ci , k 2 ⊥ ≫ k 2 � ◮ Drift-reduced Braginskii equations n , Ω , v � e , v � , i , T e , T i ◮ Flux-driven, no separation between equilibrium and fluctuations Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 6 / 37

  17. Introduction Model Two-point model Fueling Conclusions Modeling the periphery ◮ High plasma collisionality, local Maxwellian ◮ d / dt ≪ ω ci , k 2 ⊥ ≫ k 2 � ◮ Drift-reduced Braginskii equations n , Ω , v � e , v � , i , T e , T i ◮ Flux-driven, no separation between equilibrium and fluctuations ◮ Kinetic neutral equation Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 6 / 37

  18. Introduction Model Two-point model Fueling Conclusions Modeling the periphery ◮ High plasma collisionality, local Maxwellian ◮ d / dt ≪ ω ci , k 2 ⊥ ≫ k 2 � ◮ Drift-reduced Braginskii equations n , Ω , v � e , v � , i , T e , T i ◮ Flux-driven, no separation between equilibrium and fluctuations ◮ Kinetic neutral equation ◮ Interplay between plasma outflow from the core, turbulent transport, sheath losses, and recycling Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 6 / 37

  19. Introduction Model Two-point model Fueling Conclusions Fluid plasma model and interaction with neutrals ∂ n [ φ , n ]+ 2 ∂ t = − ρ − 1 B [ C ( p e ) − nC ( φ )] − ∇ � ( nv � e )+ D n ( n )+ S n + n n ν iz − n ν rec (1) ⋆ ω + B 2 ∂ ˜ ω n ∇ � j � + 2 B ω ) − n n ∂ t = − ρ − 1 [ φ , ˜ ω ] − v � i ∇ � ˜ n C ( p )+ D ˜ ω ( ˜ n ν cx ˜ ω (2) ⋆ ∂ v � e � j � � [ φ , v � e ] − v � e ∇ � v � e + m i n + ∇ � φ − 1 + D v � e ( v � e )+ n n = − ρ − 1 ν n ∇ � p e − 0 . 71 ∇ � T e n ( ν en + 2 ν iz )( v � n − v � e ) ⋆ ∂ t m e (3) ∂ v � i [ φ , v � i ] − v � i ∇ � v � i − 1 n ∇ � p + D v � i ( v � i )+ n n = − ρ − 1 n ( ν iz + ν cx )( v � n − v � i ) (4) ⋆ ∂ t � 1 � 0 . 71 � � ∂ T e [ φ , T e ] − v � e ∇ � T e + 4 T e n C ( p e )+ 5 + 2 T e = − ρ − 1 2 C ( T e ) − C ( φ ) ∇ � j � − ∇ � v � e (5) ⋆ ∂ t 3 B 3 n Te ( T e )+ S Te + n n n ν iz ( − 2 3 E iz − T e + m e v � e ( v � e − 4 3 v � n ))+ n n m e 2 + D Te ( T e )+ D � n ν en 3 v � e ( v � n − v � e )) m i m i � 1 � ∇ � n � � ∂ T i [ φ , T i ] − v � i ∇ � T i + 4 T i n C ( p e ) − τ 5 + 2 T i = − ρ − 1 2 C ( T i ) − C ( φ ) ( v � i − v � e ) − ∇ � v � e (6) ⋆ ∂ t 3 B 3 n Ti ( T i )+ S Ti + n n n ( ν iz + ν cx )( T n − T i + 1 + D Ti ( T i )+ D � 3 ( v � n − v � i ) 2 ) ∇ 2 ω = ω + τ ∇ 2 ⊥ φ = ω , ρ ⋆ = ρ s / R , ∇ � f = b 0 · ∇ f , ˜ ⊥ T i , p = n ( T e + τ T i ) + boundary conditions + kinetic neutral equation Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 7 / 37

  20. Introduction Model Two-point model Fueling Conclusions The density equation ∂ n ⋆ [ φ , n ]+ 2 ∂ t = − ρ − 1 B [ C ( p e ) − nC ( φ )] − ∇ � ( nv � e ) (7) + S n + n n ν iz − n ν rec + D ⊥ n ( n ) ◮ ExB drift ◮ Curvature terms ◮ Parallel advection ◮ Plasma source from core ◮ Interaction with neutrals ◮ Perpendicular diffusion Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 8 / 37

  21. Introduction Model Two-point model Fueling Conclusions The density equation ∂ n ⋆ [ φ , n ]+ 2 ∂ t = − ρ − 1 B [ C ( p e ) − nC ( φ )] − ∇ � ( nv � e ) (7) + S n + n n ν iz − n ν rec + D ⊥ n ( n ) ◮ ExB drift ◮ Curvature terms ◮ Parallel advection ◮ Plasma source from core ◮ Interaction with neutrals ◮ Perpendicular diffusion Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 8 / 37

  22. Introduction Model Two-point model Fueling Conclusions The density equation ∂ n ⋆ [ φ , n ]+ 2 ∂ t = − ρ − 1 B [ C ( p e ) − nC ( φ )] − ∇ � ( nv � e ) (7) + S n + n n ν iz − n ν rec + D ⊥ n ( n ) ◮ ExB drift ◮ Curvature terms ◮ Parallel advection ◮ Plasma source from core ◮ Interaction with neutrals ◮ Perpendicular diffusion Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 8 / 37

  23. Introduction Model Two-point model Fueling Conclusions The density equation ∂ n ⋆ [ φ , n ]+ 2 ∂ t = − ρ − 1 B [ C ( p e ) − nC ( φ )] − ∇ � ( nv � e ) (7) + S n + n n ν iz − n ν rec + D ⊥ n ( n ) ◮ ExB drift ◮ Curvature terms ◮ Parallel advection ◮ Plasma source from core ◮ Interaction with neutrals ◮ Perpendicular diffusion Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 8 / 37

  24. Introduction Model Two-point model Fueling Conclusions The density equation ∂ n ⋆ [ φ , n ]+ 2 ∂ t = − ρ − 1 B [ C ( p e ) − nC ( φ )] − ∇ � ( nv � e ) (7) + S n + n n ν iz − n ν rec + D ⊥ n ( n ) ◮ ExB drift ◮ Curvature terms ◮ Parallel advection ◮ Plasma source from core ◮ Interaction with neutrals ◮ Perpendicular diffusion Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 8 / 37

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend