hydration of low ph cements
play

Hydration of low pH cements Barbara Lothenbach 1 , Erich Wieland 2 , - PowerPoint PPT Presentation

Hydration of low pH cements Barbara Lothenbach 1 , Erich Wieland 2 , B. Schwyn 3 , R. Figi 1 ,D. Rentsch 1 1 Empa, Laboratory for Concrete & Construction Chemistry, Switzerland 2 PSI, Laboratory for Waste Management, Switzerland 3 Nagra,


  1. Hydration of “low pH” cements Barbara Lothenbach 1 , Erich Wieland 2 , B. Schwyn 3 , R. Figi 1 ,D. Rentsch 1 1 Empa, Laboratory for Concrete & Construction Chemistry, Switzerland 2 PSI, Laboratory for Waste Management, Switzerland 3 Nagra, National Cooperation for the Disposal of Radioactive Waste, Switzerland 1 Materials Science & Technology

  2. Objectives � Hydration of � OPC: CEM I 42.5 HS � ESDRED: CEM I 42.5 N + 40% silica fume + accelerator � LAC: CEM III/B 42.5 L + 10% nanosilica Cementitious materials used in field experiments - composition of the pore solution - mineral composition of the cement matrix - comparison 2 Materials Science & Technology

  3. Cement-Clay interface Side view Top view ( ) EDZ Cement ESDRED OPC OPA LAC OPA 3 Materials Science & Technology

  4. Cement-Clay interface ( ) EDZ ESDRED OPC LAC OPA 4 Materials Science & Technology

  5. Cement-Clay interface ( ) EDZ ESDRED OPC LAC OPA 5 Materials Science & Technology

  6. OPC: CEM I 42.5 R HS (g/100g) CaO 58.8 alite 31 SiO 2 20.6 belite 36 Al 2 O 3 3.9 aluminate 1.6 Fe 2 O 3 5.2 ferrite 16 MgO 4.6 MgO 4.6 Na 2 O 0.27 CaCO 3 3.1 K 2 O 0.75 CaSO 4 5.1 CO 2 1.4 Na 2 O 0.22 SO 3 3.5 K 2 O 0.27 CaO free 0.71 Na 2 SO 4 0.12 LOI 2.3 K 2 SO 4 0.89 w/c = 0.8 6 Materials Science & Technology

  7. XRD Portlandite (P) Ettringite (E) OPC CaCO 3 (C) P E Monocarbonate (Mc) 12000 E Ht? Hydrotalcite (H) E C-S-H E C E Mc? E P 360 d 10000 210 d 56 8000 28 d counts / - 7 d 6000 2 d 1 d P 4000 4 h 2 h 2000 G 1 h G A C G G G Gypsum (G) unhydrated F A B/A F B/A A 0 Ferrite (F) Alite (A) 5 10 15 20 25 30 35 Belite (B) 2-theta / ° 7 Materials Science & Technology

  8. Composition of the pore solution OPC (CEM I 42.5 R HS) 1 OH - K 0.1 Na 0.01 Al Ca Ca K mol/l Na 0.001 S OH S Si 0.0001 Si Al 0.00001 0.000001 0.01 0.1 1 10 100 1000 Time (days) 8 Materials Science & Technology

  9. Hydration (Lothenbach and Winnefeld, 2006) clinker clinker alite (C 3 S), belite (C 2 S) C-S-H Portlandite Ettringite aluminate(C 3 A), ferrite C 4 AF) 9 Materials Science & Technology

  10. Modeling - Dissolution Empirical Approach: Parrot and Killoh (1984) Cement specific input: 70 surface area, w/c alite: C 3 S ) ( ) ( )( K − = − α − − α 1 N 1 R 1 ln( 1 ) 1 60 t t t N 1 50 ( ) × − α 2 / 3 K 1 = 2 t g/100 g R 40 ( ) t − − α 1 / 3 1 1 t 30 ( ) belite: C 2 S = × − α N R K 1 3 t 3 t 20 ferrite:C 4 AF All parameters (K i , N i ) from 10 Parrot and Killoh (1984) // 0 0 0.1 1 10 100 α : degree of hydration time (days) aluminate:C 3 A 10 Materials Science & Technology

  11. Thermodynamic Modeling Thermodynamic modeling Cements Ca 2+ I clinkers (slowly soluble) CaOH + Speciation in solution CaSO 4 0 K 2 O C 3 S C 2 S Na 2 O C 3 A C 4 AF MgO II soluble solids Portlandite K 2 SO 4 C-S-H Na 2 SO 4 gypsum hemihydrate anhydrite Ettringite CaO calcite AFm III water Hydrotalcites, ... H 2 O 11 Materials Science & Technology

  12. Modeling – Concentrations in solution pH (360 days) 13.3 - OH K 100 Na 10 concentrations (mmol/l) sulfur Ca 1 0.1 Si Al 0.01 1E-3 0.01 0.1 1 10 100 1000 time (days) 12 Materials Science & Technology

  13. Modeling - relative mass of solids (mass refers to total solid, including hydrated) 80 pore solution 75 70 65 60 g/100 g cement hydrated 55 50 45 belite 40 C-S-H 35 alite 30 25 ferrite portlandite 20 gypsum ettringite 15 monocarbonate 10 hydrotalcite 5 0 calcite 0.01 0.1 1 10 100 1000 time (days) unhydrated clinker 13 Materials Science & Technology

  14. Modeling – Volume of solids 60 ettringite 50 monocarbonate calcite 40 3 /100 g cement hydrotalcite gypsum portlandite 30 C 4 AF cm 20 C 2 S C-S-H 10 C 3 S 0 0.01 0.1 1 10 100 1000 time [days] 14 Materials Science & Technology

  15. Summary - OPC � Comparable to other OPC systems investigated � Main hydration products � C-S-H, portlandite, ettringite � hydrotalcite, monocarbonate, calcite � pH increases with time � Solution dominated by OH, K, Na 15 Materials Science & Technology

  16. ESDRED: 60% CEM I + 40% silica fume 5% alkali free accelerator CEM I 42.5 N silica fume alkali-free (g/100g) accelerator CaO 61.6 2.1 < SiO 2 21.9 93.3 < → 0.16 mmol Al 2 O 3 4.8 0.2 16 Fe 2 O 3 2.5 0.1 < MgO 1.9 0.4 0.7 + CaSO 4 (0.32) + CaO (0.64) Na 2 O 0.25 <0.01 0.2 → C 6 A$ 3 H 32 K 2 O 0.99 0.5 0.5 CO 2 2.0 -- -- SO 3 3.4 0.02 15 → 0.18 mmol LOI 2.3 3.1 dissolved organic carbon 2.5 16 Materials Science & Technology

  17. XRD Ettringite Hemicarbonate Hemi- Portlandite 1-56 days 360 days carbonate 4000 1-7 days Mono- carbonate 56 days E 3500 E E E E C 7 days 3000 2500 counts / - 1 day 2000 1 h 1500 unhydrated 1000 C 3 A 500 G F A Anhydrite Alite 0 Alite/ belite 5 10 15 20 25 30 35 2-theta / ° 17 Materials Science & Technology

  18. TGA unhydrated ESDRED 1 hour unhydrated 2 hours 100 0.15 relative weight (%) 4 hours 6 hours 95 1 h 1 day 0.10 1 day 90 2 days 2 days 7days 4 days 4 days 85 7 days 0.05 360 days 14 days 80 28 days gypsum unhydrated CaCO 3 56 days 75 0.00 Diff. relative weight (%/K) 210 days 360 days 14 days 70 C-S-H portlandite 1 h -0.05 7 days 1-14 days 65 hemicarbonate max. 4 days 1-56 days 60 max. 4 days -0.10 360 days 55 ettringite 210 days 50 -0.15 0 100 200 300 400 500 600 700 800 temperature (°C) 18 Materials Science & Technology

  19. TGA – Quantification of solution and solids 60 // pore solution ettringite 50 calcite portlandite 40 g/100 g 30 20 10 // 0 0 0.01 0.1 1 10 100 1000 time (days) 19 Materials Science & Technology

  20. ESDRED - Portlandite 25 25 // // 20 20 % portlandite % portlandite For comparison: OPC 15 15 10 10 5 5 // // 0 0 0 0 0.01 0.01 0.1 0.1 1 1 10 10 100 100 1000 1000 time (days) time (days) 20 Materials Science & Technology

  21. Silica fume Q 4 Reactivity of SiO 2 anhydrous cement Q 0 � Si-NMR Q 1 Q 2 21 Materials Science & Technology

  22. dissolution of silica fume Si NMR 50% 45% initial amount of silica fume 40% silica fume [g/100 g] 35% 30% 25% 20% 15% 10% 5% 0% 0.01 0.1 1 10 100 1000 time [days] 22 Materials Science & Technology

  23. dissolution of silica fume Si NMR 50% 45% initial amount of silica fume 40% silica fume [g/100 g] 35% 30% 25% SiO 2 = 0.17 + 0.23e -0.05t 20% 15% 10% 5% 0% 0.01 0.1 1 10 100 1000 time [days] 23 Materials Science & Technology

  24. Composition of the pore solution 1.E+00 K OH - DOC 1.E-01 Na 1.E-02 Ca S mol/l 1.E-03 Si 1.E-04 Al 1.E-05 1.E-06 Time (days) 0.01 0.1 1 10 100 1000 24 Materials Science & Technology

  25. Composition of the pore solution ESDRED (CEM I 42.5 N + SF + Sigunit) K, Na => in C-S-H 0.25 Low C/S => more K, Na in C-S-H K 0.2 pH (360 days) Al 11.3 Ca OH - K 0.15 Na OH mol/l S Si 0.1 Na 0.05 S Ca 0 Al Time (days) 0.01 0.1 1 10 100 1000 Si 25 Materials Science & Technology

  26. Modeling ESDRED hydration Portland cement hydration • similar to OPC system • 1st hour increased dissolution of clinker (Paglia et al., 2004) • silica fume dissolution according to NMR data Problems � Alkali (K) and Al-uptake in C-S-H not well known � strätlingite or Al-in C-S-H? 26 Materials Science & Technology

  27. Modeling - relative mass of solids (mass refers to total solid, including hydrated) pH > 13 pH ≤ 12.5 pH 11.3 50 pore solution 45 C-S-H Experimental: 40 Portlandite 1-7 days silica fume Hemi-/Monocarbonate: 1-28 day 35 g/100 g cement hydrated Stratlingite difficult 30 to detect by XRD 25 belite 20 15 ettringite alite 10 aluminate monocarbonate stratlingite ferrite 5 calcite hydrotalcite 0 1E-3 0.01 0.1 1 10 100 1000 portlandite time (days) 27 Materials Science & Technology unhydrated clinker

  28. 13.5 Modeling – Volume of solids pH measured 13 12.5 C-S-H C/S ~ 1.5 pH 12 C-S-H C/S ~0.9 11.5 11 stratlingite 55 50 calcite monocarbonate 45 hydrotalcite 40 35 ettringite 3 /100 g cement 30 portlandite C-S-H 25 No Al in C-S-H 20 silica fume cm 15 C 4 AF C 3 A 10 C 2 S 5 C 3 S 0 0.01 0.1 1 10 100 1000 time [days] 28 Materials Science & Technology

  29. Tobermorite structure SiO 2 - Dreierketten Al-substitution increase at low C/S ratios CaO layers Al-substitution increases uptake of alkalis alkalis Interlayer Interlayer Al-substitution Richardson, 1999 29 Materials Science & Technology

  30. 13.5 Modeling – Volume of solids pH measured 13 12.5 C-S-H C/S ~ 1.5 pH 12 C-S-H C/S ~0.9 11.5 11 stratlingite 55 calcite 50 ettringite calcite monocarbonate 45 hydrotalcite hydrotalcite 40 35 ettringite 3 /100 g cement 30 portlandite portlandite C-S-H C-(Al)-S-H Al/Si = 0.08 25 20 silica fume cm 15 C 4 AF C 3 A 10 C 2 S 5 C 3 S 0 0.01 0.1 1 10 100 1000 time [days] 30 Materials Science & Technology

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend