how we look inside stars stellar evolution codes
play

How we look inside stars: stellar evolution codes & Mathieu - PowerPoint PPT Presentation

Computational Astrophysics 18/01/16 How we look inside stars: stellar evolution codes & Mathieu Renzo, PhD student @ API, UvA Traditional scientific knowledge has generally taken the form of either theory or experimental data.


  1. Computational Astrophysics – 18/01/16 How we “look” inside stars: stellar evolution codes & Mathieu Renzo, PhD student @ API, UvA “Traditional scientific knowledge has generally taken the form of either theory or experimental data. However, where theory and experiment stumble, simulations may offer a third way.” Simulation, Johannes Lenhard et al. 1 / 24

  2. Outline The most important thing What is (Computational) “Stellar Astrophysics”? The stellar evolution code • Basic Assumptions • Discretization • Translation of the Physics for the Computer • Example of input Physics: Nuclear Reaction Networks • How the Computer Solves the Equations What do I do with it? 2 / 24

  3. Outline The most important thing What is (Computational) “Stellar Astrophysics”? The stellar evolution code • Basic Assumptions • Discretization • Translation of the Physics for the Computer • Example of input Physics: Nuclear Reaction Networks • How the Computer Solves the Equations What do I do with it? 3 / 24

  4. The most important thing This is what should not happen grep is your friend! (see man grep on *nix) 4 / 24

  5. Outline The most important thing What is (Computational) “Stellar Astrophysics”? The stellar evolution code • Basic Assumptions • Discretization • Translation of the Physics for the Computer • Example of input Physics: Nuclear Reaction Networks • How the Computer Solves the Equations What do I do with it? 5 / 24

  6. How can we “look” inside a star? Figures Credits: NASA ? ⇒ 6 / 24

  7. How can we “look” inside a star? Figures Credits: NASA ? ⇒ We simply can’t!! Other Q: How can we observe how one star evolves? 6 / 24

  8. So what to do? Advantages • Full control over the parameters 1 Build a theory from first ⇒ Numerical Experiments; principles; • Allow to focus on interesting 2 Plug it in a computer; things (e.g. no reddening!); • Allow to deal with long-lasting, 3 Get out a model ; rare, inaccessible phenomena; 4 Find a smart way to Drawbacks compare it to what we • Numerical errors; can observe. • Limited computational resources; • Nature ≫ Theory ≫ Model. “All models are wrong, but some are useful” – G. Box 7 / 24

  9. Outline The most important thing What is (Computational) “Stellar Astrophysics”? The stellar evolution code • Basic Assumptions • Discretization • Translation of the Physics for the Computer • Example of input Physics: Nuclear Reaction Networks • How the Computer Solves the Equations What do I do with it? 8 / 24

  10. The Stellar Evolution Code: is a tool , not a theory! What does it stand for? References: Modules for Paxton et al. 2011, ApJs192,3 Experiments in Paxton et al. 2013, ApJs208,4 Paxton et al. 2015, ApJs220,15 Stellar mesa.sourceforge.net mesastar.org Astrophysics Open Source ⇔ Open Know How “An algorithm must be seen to be believed” – D. Knuth How to get MESA: svn co -r 7624 svn://svn.code.sf.net/p/mesa/code/trunk mesa 9 / 24

  11. Modules overview 10 / 24

  12. Numerical Methods: 1D (or 1.5D) Prohibitive computational cost of 3D simulations ⇒ 1D, but stars are not spherical-symmetric! Need of parametric approximations for: • Rotation ⇒ “Shellular Approximation”; • Magnetic Fields; • Convection ⇒ Mixing Length Theory (MLT); • (Some) mixing processes; • ... Beware of systematic errors! (Recall: Nature ≫ Model) 11 / 24

  13. Numerical Methods: Hydrostatic code... dr = − Gm ( r ) ρ dP r 2 ... but stars are not necessarily static! Other examples: • He flash, • Outburst and Eruptions, • Impulsive mass loss, • RLOF , • ... Figure: η Car, APOD. 12 / 24

  14. Numerical Methods: Discretization For numerical solutions: dx → f ( x k + 1 ) − f ( x k ) df x k + 1 − x k ⇒ Discretization of space (mesh or grid) and time (timesteps) (Recall: Nature ≫ Model) 13 / 24

  15. Spatial Discretization (Meshing) toward surface face k-1 m k − 1 , r k − 1 , L k − 1 , v k − 1 , ... cell k-1 dm k − 1 ρ k − 1 , T k − 1 , X i , k − 1 , P k − 1 , ... • Intensive quantities face k (e.g. T , ρ ) averaged dm k m k , r k , L k , v k , σ F i , k , P k , T k , ∇ T k , , k by mass within each cell; cell k dm k ρ k , T k , X i , k , P k , ∇ , , ad , k ε nuc , k ε grav , k • Extensive quantities (e.g. m , L ) calculated face k + 1 m k + 1 , r k + 1 , L k + 1 , v k + 1 , k + 1 , F i , k + 1 , ... σ at outer cell boundary. toward center Figure: From Paxton et al. 2011, ApJs, 192, 3 Need to check that your physical results do not depend on the way you discretize space. 14 / 24

  16. Numerical Methods: Timestep selection ∆ t n : Large enough, but � τ KH , τ ˙ M , etc. Need to find the best ∆ t n at each step – few × 100 � total n � few × 10 4 15 / 24

  17. Reformulation of the (1D–) Equations Physical Theory: Numerical Implementation: � � dr = − Gm ( r ) ρ dP F + ⇔ r 2 4 π r 2 dm dr = 4 π r 2 ρ ⇔ κρ L dT 3 dr = − ⇔ 16 π ac r 2 T 3 dL dr = 4 π r 2 ρε ⇔ P ≡ P ( ρ , µ , T ) ⇔ � � � � � dX i � σ i ∇ 2 X i = P j , i ( T , ρ ) − ∑ D i , k ( T , rho , ) + ∑ � dt � j k r ⇔ 16 / 24

  18. Reformulation of the (1D–) Equations Physical Theory: Numerical Implementation: � � P k − 1 − P k dr = − Gm ( r ) ρ 0 . 5 ( dm k − 1 − dm k ) = − Gm k a k dP F + ⇔ k − r 2 4 π r 2 4 π r 4 4 π r 2 k � � dm ln ( r k ) = 1 k + 1 + 3 dm k dr = 4 π r 2 ρ r 3 ⇔ 3 ln 4 π ρ k � � � ˜ T k − 1 − T k κρ L T k dT 3 dP � dr = − ⇔ ( dm k − 1 − dm k ) / 2 = −∇ T , k � ˜ 16 π ac r 2 T 3 dm P k � k dL dr = 4 π r 2 ρε ⇔ L k − L k + 1 = dm k { ε nuc − ε ν + ε grav } P ≡ P ( ρ , µ , T ) ⇔ P ≡ P ( ρ , µ , T ) � � � � � dX i � σ i ∇ 2 X i = P j , i ( T , ρ ) − ∑ D i , k ( T , rho , ) + ∑ � dt � j k r ⇔ � � dX i , k nuc + ( X i , k − X i , k − 1 ) σ k ∆ t n + 1 X i , k ( t n + ∆ t n + 1 ) = X i , k ( t n ) + ∆ t n + 1 0 . 5 ( dm k − 1 − dm k ) dt 16 / 24

  19. Reformulation of the (1D–) Equations Physical Theory: Numerical Implementation: � � P k − 1 − P k dr = − Gm ( r ) ρ 0 . 5 ( dm k − 1 − dm k ) = − Gm k a k dP F + ⇔ k − r 2 4 π r 2 4 π r 4 4 π r 2 k � � dm ln ( r k ) = 1 k + 1 + 3 dm k dr = 4 π r 2 ρ r 3 ⇔ 3 ln 4 π ρ k � � � ˜ T k − 1 − T k κρ L T k dT 3 dP � dr = − ⇔ ( dm k − 1 − dm k ) / 2 = −∇ T , k � ˜ 16 π ac r 2 T 3 dm P k � k dL dr = 4 π r 2 ρε ⇔ L k − L k + 1 = dm k { ε nuc − ε ν + ε grav } P ≡ P ( ρ , µ , T ) ⇔ P ≡ P ( ρ , µ , T ) � � � � � dX i � σ i ∇ 2 X i = P j , i ( T , ρ ) − ∑ D i , k ( T , rho , ) + ∑ � dt � j k r ⇔ � � dX i , k nuc + ( X i , k − X i , k − 1 ) σ k ∆ t n + 1 X i , k ( t n + ∆ t n + 1 ) = X i , k ( t n ) + ∆ t n + 1 0 . 5 ( dm k − 1 − dm k ) dt 16 / 24

  20. Reformulation of the (1D–) Equations Physical Theory: Numerical Implementation: � � P k − 1 − P k dr = − Gm ( r ) ρ 0 . 5 ( dm k − 1 − dm k ) = − Gm k a k dP F + ⇔ k − r 2 4 π r 2 4 π r 4 4 π r 2 k � � dm ln ( r k ) = 1 k + 1 + 3 dm k dr = 4 π r 2 ρ r 3 ⇔ 3 ln 4 π ρ k � � � ˜ T k − 1 − T k κρ L T k dT 3 dP � dr = − ⇔ ( dm k − 1 − dm k ) / 2 = −∇ T , k � ˜ 16 π ac r 2 T 3 dm P k � k dL dr = 4 π r 2 ρε ⇔ L k − L k + 1 = dm k { ε nuc − ε ν + ε grav } P ≡ P ( ρ , µ , T ) ⇔ P ≡ P ( ρ , µ , T ) � � � � � dX i � σ i ∇ 2 X i = P j , i ( T , ρ ) − ∑ D i , k ( T , rho , ) + ∑ � dt � j k r ⇔ � � dX i , k nuc + ( X i , k − X i , k − 1 ) σ k ∆ t n + 1 X i , k ( t n + ∆ t n + 1 ) = X i , k ( t n ) + ∆ t n + 1 0 . 5 ( dm k − 1 − dm k ) dt 16 / 24

  21. Reformulation of the (1D–) Equations Physical Theory: Numerical Implementation: � � P k − 1 − P k dr = − Gm ( r ) ρ 0 . 5 ( dm k − 1 − dm k ) = − Gm k a k dP F + ⇔ k − r 2 4 π r 2 4 π r 4 4 π r 2 k � � dm ln ( r k ) = 1 k + 1 + 3 dm k dr = 4 π r 2 ρ r 3 ⇔ 3 ln 4 π ρ k � � � ˜ T k − 1 − T k κρ L T k dT 3 dP � dr = − ⇔ ( dm k − 1 − dm k ) / 2 = −∇ T , k � ˜ 16 π ac r 2 T 3 dm P k � k dL dr = 4 π r 2 ρε ⇔ L k − L k + 1 = dm k { ε nuc − ε ν + ε grav } P ≡ P ( ρ , µ , T ) ⇔ P ≡ P ( ρ , µ , T ) � � � � � dX i � σ i ∇ 2 X i = P j , i ( T , ρ ) − ∑ D i , k ( T , rho , ) + ∑ � dt � j k r ⇔ � � dX i , k nuc + ( X i , k − X i , k − 1 ) σ k ∆ t n + 1 X i , k ( t n + ∆ t n + 1 ) = X i , k ( t n ) + ∆ t n + 1 0 . 5 ( dm k − 1 − dm k ) dt 16 / 24

  22. Numerical Methods: Nuclear Networks (Ex. of) tricks under the hood: • Compound reactions, e.g. 3 α : � 12 C + γ ; α + α → � 8 Be + α → • (Quasi Statistical Equilibrium Networks for advanced burning stages); High impact on: What matters: • Computational cost ( ∝ N 2 • Total Number iso ) ⇒ Run time; of Isotopes N iso ; • ε nuc ⇒ L , T c , ρ c , etc.; • Which Isotopes; • Free electrons ( Y e ) ⇒ • Number of Nuclear Final fate (BH,NS, WD, etc.) Reactions. 17 / 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend