how to find a higgs boson
play

How to find a Higgs boson Heather M. Gray, CERN ( ) S E R E - PowerPoint PPT Presentation

How to find a Higgs boson Heather M. Gray, CERN ( ) S E R E H W ? S G G I H higgs discovery ( ) -1 -1 CMS s = 7 TeV, L = 5.1 fb s = 8 TeV, L = 5.3 fb S/(S+B) Weighted Events / 1.5 GeV 0 Local p


  1. How to find a Higgs boson Heather M. Gray, CERN ( へざあ ) S ’ E R E H W ? S G G I H

  2. higgs discovery ( 発⾒覌 ) -1 -1 CMS s = 7 TeV, L = 5.1 fb s = 8 TeV, L = 5.3 fb S/(S+B) Weighted Events / 1.5 GeV 0 Local p Events / 1.5 GeV ATLAS 2011 - 2012 Unweighted Obs. -1 ∫ s = 7 TeV: Ldt = 4.6-4.8 fb 1500 Exp. -1 1500 ∫ s = 8 TeV: Ldt = 5.8-5.9 fb 1 ± σ 1 0 σ -1 1 σ 10 1000 2 σ -2 10 -3 3 10 σ 1000 -4 10 120 130 4 σ -5 10 m (GeV) -6 γ γ 10 5 σ -7 10 -8 10 Data -9 500 10 6 σ S+B Fit -10 10 B Fit Component -11 10 1 ± 110 115 120 125 130 135 140 145 150 σ 2 m [GeV] ± σ H 0 110 120 130 140 150 m (GeV) γ γ Seminar on 4 July 2012 by the ATLAS and CMS collaborations

  3. this talk ( この話 ) • NOT about the Higgs discovery • NOT to discuss the latest Higgs results • There are many and they are interesting • Ask me about them later if you like • But rather, to try to explain how we go about doing a Higgs analysis using a specific example • Example: http://link.springer.com/article/10.1007/ JHEP01(2015)069

  4. choose your channel I ( あなたのチャンネルを選択 ) Gluon fusion Vector Boson Fusion (VBF) H q W, Z Production H Cross-section W, Z q σ [pb] 20 15 10 5 ttH Production 0 ( W/Z) ggF VBF (W/Z)H ttH t Production g q t H W/Z t g t H q

  5. choose your channel I ( あなたのチャンネルを選択 ) Gluon fusion Vector Boson Fusion (VBF) H q W, Z Production H Cross-section W, Z q σ [pb] 20 15 10 5 ttH Production 0 ( W/Z) ggF VBF (W/Z)H ttH t Production g q t H W/Z t g t H q

  6. choose your channel II ( あなたのチャンネルを選択 ) γ Decay Η b t H Probability t H γ t Other b 11% 0% 3% ττ W 6% H bb W WW 58% 22% τ H Z H τ Z

  7. choose your channel II ( あなたのチャンネルを選択 ) γ Decay Η b t H Probability t H γ t Other b 11% 0% 3% ττ W 6% H bb W WW 58% 22% τ H Z H τ Z

  8. build a billion dollar collider ( ⼗卂億ドルの加速器の建設 )

  9. and a couple million dollar detectors ( そして数百万ドルの検出器 ) CMS (Compact Muon Solenoid) ATLAS (A Toroidal ApparatuS)

  10. reconstruction ( 再構築 ) • Reconstruct electrons, muons, photons from energy deposits • Reconstruct jets and tag b- jets with sophisticated algorithms • Use conversation of (transverse) energy to calculate the missing energy (MET) MET jet

  11. jet reconstruction ( ジェット再構築 ) jet reconstruction algorithms group energy deposits together in different ways to form jets

  12. b-jet reconstruction ( ビージェット識別 ) b-quarks have a longer lifetime than other elementary particles identify b-jets by reconstructing displaced vertices from tracks

  13. choose your cuts H W b b l ν • Need events containing two b-jets, 1 lepton and MET • j 1 p T > 45 GeV; j 2 p T > 20 GeV, MV1c > 80% • l p T > 20 GeV; isolated, MET > 20 GeV

  14. choose discriminating variable good discrimination poor discrimination B S B S The better the discriminating variable, the larger the separation between signal and background For the Higgs, a good variable is the mass

  15. background ( 背景 ) • Background events are other events 700 Events / 25 GeV Data 2012 ATLAS VH(bb) ( =1.0) µ ∫ Diboson -1 s = 8 TeV Ldt = 20.3 fb 600 t t that look just like signal 1 lep., 2 jets, 2 Medium+Tight tags Single top V Multijet incl. p >120 GeV T W+hf 500 W+cl W+l Z+hf • Two types of background 400 Uncertainty Pre-fit background × VH(bb) 20 300 • Reducible 200 100 • Experimental: better isolation cut, 1.5 20 40 60 80 100 120 140 160 180 200 220 Data/Pred improved b-tagging algorithm 1 0.5 20 40 60 80 100 120 140 160 180 200 220 m [GeV] • Physics: different final state, e.g. bb top additional lepton, jets W+cl • Irreducible = same final state as signal W+bb • Often different kinematics or WZ need to apply kinematic cuts

  16. background uncertainty ( 背景の不確実性 ) • Large uncertainties -> more difficult to extract the signal • Uncertainties can be both statistical and systematic • Decrease impact by either reducing background or reducing uncertainty: e.g. estimate in a control region

  17. systematic uncertainties ( 系統誤差 ) Z +jets background background Zl normalisation, 3/2-jet ratio 5% Zcl 3/2-jet ratio 26% normalisation shape Z +hf 3/2-jet ratio 20% Z +hf/ Zbb ratio 12% ∆ φ (jet 1 , jet 2 ), p V T , m bb S W +jets Wl normalisation, 3/2-jet ratio 10% Wcl , W +hf 3/2-jet ratio 10% Wbl / Wbb ratio 35% Wbc / Wbb , Wcc / Wbb ratio 12% ∆ φ (jet 1 , jet 2 ), p V T , m bb S tt 3/2-jet ratio 20% High/low- p V T ratio 7.5% Top-quark p T , m bb , E miss S T Single top Cross section 4% ( s -, t -channel), 7% ( Wt ) Acceptance (generator) 3%–52% m bb , p b 1 S T signal Diboson Cross section and acceptance (scale) 3%–29% scale Cross section and acceptance (PDF) 2%–4% S m bb Multijet 0-, 2-lepton channels normalisation 100% 1-lepton channel normalisation 2%–60% Template variations, reweighting S

  18. improving sensitivity: mass resolution ( 質量分解能 ) • The better the mass resolution, the Events / 4.0 GeV ATLAS Simulation Resolutions ( - )/ 0.1 σ σ σ GSC GSC Pythia VH, H b b MC → 16.4 GeV -- 2 lep., 2 jets, 2 b-tags 14.4 GeV 12% smaller the amount of background V p inclusive 0.08 14.1 GeV 14% T that needs to be considered 0.06 Global Sequential Calib. (GSC) + Muon-in-Jet Correction + Resolution Correction 0.04 • 14% improvement in resolution 0.02 0 0 20 40 60 80 100 120 140 160 180 200 m [GeV] bb

  19. improving sensitivity: MVA ( 多変量解析 ) Events / 25 GeV Data 2012 ATLAS VH(bb) ( =1.0) µ 60 ∫ Diboson -1 s = 8 TeV Ldt = 20.3 fb t t 1 lep., 2 jets, 2 Tight tags Single top Events / 0.2 Events / 25 GeV Events / 20 GeV V 1000 900 Multijet 1800 50 160<p <200 GeV Data 2012 Data 2012 Data 2012 ATLAS ATLAS ATLAS VH(bb) ( =1.0) VH(bb) ( =1.0) VH(bb) ( =1.0) T W+hf µ µ µ ∫ -1 Diboson ∫ -1 Diboson ∫ -1 Diboson 800 s = 8 TeV Ldt = 20.3 fb s = 8 TeV Ldt = 20.3 fb s = 8 TeV Ldt = 20.3 fb Z+hf 1600 t t t t t t 0 lep., 2 jets, 2 tags 0 lep., 2 jets, 2 tags 1 lep., 2 jets, 2 tags Single top Single top Single top Uncertainty 800 V Multijet V Multijet V Multijet p >120 GeV p >120 GeV 700 p >120 GeV 1400 40 Pre-fit background T W+hf T W+hf T W+hf × W+cl W+cl W+cl VH(bb) 10 W+l W+l 600 W+l 1200 Z+hf Z+hf Z+hf 600 Z+cl Z+cl Uncertainty 500 1000 Z+l Z+l Pre-fit background 30 × Uncertainty Uncertainty VH(bb) 50 Pre-fit background Pre-fit background 400 800 VH(bb) × 10 VH(bb) × 50 400 600 300 20 200 400 200 200 100 10 0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500 2 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Data/Pred Data/Pred Data/Pred 1.5 1.5 1.5 1 1 1 0.5 20 40 60 80 100 120 140 160 180 200 220 0.5 0.5 0 Data/Pred 0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 1.5 ∆ m [GeV] miss R(b ,b ) E [GeV] bb 2 (a) (b) T (c) 1 1 0.5 Events / 20 GeV 4500 Events / 20 GeV Events / 0.2 Data 2012 Data 2012 Data 2012 20 40 60 80 100 120 140 160 180 200 220 300 ATLAS ATLAS ATLAS VH(bb) ( =1.0) VH(bb) ( =1.0) VH(bb) ( =1.0) µ µ µ ∫ Diboson ∫ Diboson ∫ Diboson 4000 -1 -1 -1 s = 8 TeV Ldt = 20.3 fb s = 8 TeV Ldt = 20.3 fb 250 s = 8 TeV Ldt = 20.3 fb m [GeV] t t t t t t bb 1 lep., 2 jets, 2 tags 2 lep., 2 jets, 2 tags 2 lep., 2 jets, 2 tags Single top Single top Single top 250 3500 V Multijet V Z+hf V Z+hf p >120 GeV p >120 GeV p >120 GeV T W+hf T Z+cl T Z+cl 200 W+cl Z+l Z+l 3000 W+l Uncertainty Uncertainty 200 Z+hf Pre-fit background Pre-fit background Uncertainty VH(bb) × 60 VH(bb) × 60 2500 Pre-fit background 150 × VH(bb) 90 150 2000 100 1500 100 1000 50 50 500 Events / 0.14 Data 2012 0 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 450 Data/Pred Data/Pred Data/Pred 1.5 ATLAS 1.5 1.5 VH(bb) ( =1.0) µ 1 1 1 ∫ Diboson -1 s = 8 TeV Ldt = 20.3 fb 0.5 0.5 400 t t 0.5 1 lep., 2 jets, 2 Tight tags 0 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Single top p V [GeV] p (b ) [GeV] ∆ η V Multijet (V,bb) p >120 GeV (d) T (e) T 1 (f) 350 T W+hf Z+hf Uncertainty 300 Pre-fit background × VH(bb) 20 250 200 Multivariate techniques combine 150 100 information from kinematic distributions 50 2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Data/Pred into a single discriminating variable 1.5 1 0.5 0 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 BDT VH

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend