how to do 3x2pt analysis of sz and galaxies
play

How to do 3x2pt analysis of SZ and galaxies Eiichiro Komatsu - PowerPoint PPT Presentation

Ando, Benoit-Lvy, EK (2018) 2MASS Auto Bolliet, Comis, EK, Macias-Prez (2018) SZ Auto Makiya, Ando, EK (2018) SZ-2MASS Cross How to do 3x2pt analysis of SZ and galaxies Eiichiro Komatsu (Max-Planck-Institut fr Astrophysik)


  1. 2MRS Auto Power • ~40,000 galaxies over full sky, but a lot of power on all scales, indicating extremely strong clustering • Far from Gaussian. We need to include non- Gaussian error bars [connected trispectrum] • Many “nuisance” parameters [nuisance for cosmologists but not necessarily for others] 44

  2. Nuisance parameters, or: How galaxies populate halos? Projecting 3-d galaxy power spectrum onto 2-d: • Halo model (Seljak 2000) 45

  3. 5 nuisance parameters (just for galaxies) • Halo model (Seljak 2000) 46

  4. Nasty degeneracy among nuisance parameters… But who cares, we just marginalise 47

  5. Ando, Benoit-Lévy & EK (2018) Dominated by 1-halo term in most of the angular scales => Good for cross-correlation with SZ clusters 48

  6. Why should we believe this? • Nuisance parameters - too phenomenological? And horrible posterior… How do we know that these numbers make any sense? • Uniqueness of a low-z survey like 2MASS: we actually see these parameters in the sky, because we resolve all galaxy clusters/groups! 49

  7. Satellite galaxy radial profiles Ando, Benoit-Lévy & EK (2018)

  8. Number of satellites per halo Ando, Benoit-Lévy & EK (2018) 51

  9. Planck Collaboration (2016) Bolliet, Comis, EK, Macias-Pérez (2018) SZ Auto Power B. Bolliet • Far from Gaussian. We need to include non- Gaussian error bars with non-Gaussian error [connected trispectrum] without • When fitting, the Planck team used Gaussian covariance ignoring the non-Gaussian term Foregrounds = Nuisance Parameters • We also have a bunch of nuisance parameters 52

  10. Interpreting Planck’s SZ Power Spectrum • Planck Collaboration (2015) • Ignored trispectrum; Nuisance parameters marginalised over • Horowitz & Seljak (2017); Salvati et al. (2018) • Included trispectrum; Nuisance parameters not marginalised over • Hurier & Lacasa (2017) • Included trispectrum; Nuisance parameters not marginalised over but performed cleaning in C l space 53

  11. Interpreting Planck’s SZ Power Spectrum We vary/marginalise over everything: • Planck Collaboration (2015) • Ignored trispectrum; Nuisance parameters • SZ model parameters marginalised over • All relevant cosmological parameters • Horowitz & Seljak (2017); Salvati et al. (2018) • Nuisance parameters • Included trispectrum; Nuisance parameters not marginalised over with the trispectrum that depends also • Hurier & Lacasa (2017) on the SZ+cosmological parameters • Included trispectrum; Nuisance parameters not marginalised over but performed cleaning in C l space 54

  12. Bolliet, Comis, EK, Macias-Pérez (2018) SZ power is lower than Planck without with trispectrum 55

  13. EK, Kitayama (1999); EK, Seljak (2002) Simple Interpretation C l [not “l 2 C l ”] multipole • Randomly-distributed point sources = Poisson spectrum = ∑ i (flux i ) 2 / 4 π 56

  14. EK, Kitayama (1999); EK, Seljak (2002) Simple Interpretation C l [not “l 2 C l ”] multipole • Extended sources = the power spectrum reflects intensity profiles 57

  15. l(l+1)C l /2 π [ μ K 2 ] >5x10 13 M sun >5x10 14 M sun Adding smaller clusters >10 15 M sun >2x10 15 M sun Multipole 58

  16. <latexit sha1_base64="jG4q3CLuBbOdwxz2VYtq2xgJvfo=">ACD3icbZC7SgNBFIZn4y3G26qlzWAQLSTuiqIWQoiNjRDBmEASwuzkJBkye2HmrBCWfQbX8XGQsXW1s63cXIRNPrDwMd/zuHM+b1ICo2O82lZmbn5heyi7ml5ZXVNXt941aHseJQ4aEMVc1jGqQIoICJdQiBcz3JFS9/sWwXr0DpUY3OAgqbPuoHoCM7QWC17t4FCtoFetZJjx+EpPf/G/aShfIoqhjQ9KLXsvFNwRqJ/wZ1AnkxUbtkfjXbIYx8C5JpXedCJsJUyi4hDTXiDVEjPdZF+oGA+aDbiajg1K6Y5w27YTKvADpyP05kTBf64HvmU6fYU9P14bmf7V6jJ3TZiKCKEYI+HhRJ5YUQzpMh7aFAo5yYIBxJcxfKe8xTiaDHMmBHf65L9QOSycFdzro3yxNEkjS7bINtkjLjkhRXJyqRCOLknj+SZvFgP1pP1ar2NWzPWZGaT/JL1/gUgTpr4</latexit> <latexit sha1_base64="jG4q3CLuBbOdwxz2VYtq2xgJvfo=">ACD3icbZC7SgNBFIZn4y3G26qlzWAQLSTuiqIWQoiNjRDBmEASwuzkJBkye2HmrBCWfQbX8XGQsXW1s63cXIRNPrDwMd/zuHM+b1ICo2O82lZmbn5heyi7ml5ZXVNXt941aHseJQ4aEMVc1jGqQIoICJdQiBcz3JFS9/sWwXr0DpUY3OAgqbPuoHoCM7QWC17t4FCtoFetZJjx+EpPf/G/aShfIoqhjQ9KLXsvFNwRqJ/wZ1AnkxUbtkfjXbIYx8C5JpXedCJsJUyi4hDTXiDVEjPdZF+oGA+aDbiajg1K6Y5w27YTKvADpyP05kTBf64HvmU6fYU9P14bmf7V6jJ3TZiKCKEYI+HhRJ5YUQzpMh7aFAo5yYIBxJcxfKe8xTiaDHMmBHf65L9QOSycFdzro3yxNEkjS7bINtkjLjkhRXJyqRCOLknj+SZvFgP1pP1ar2NWzPWZGaT/JL1/gUgTpr4</latexit> <latexit sha1_base64="jG4q3CLuBbOdwxz2VYtq2xgJvfo=">ACD3icbZC7SgNBFIZn4y3G26qlzWAQLSTuiqIWQoiNjRDBmEASwuzkJBkye2HmrBCWfQbX8XGQsXW1s63cXIRNPrDwMd/zuHM+b1ICo2O82lZmbn5heyi7ml5ZXVNXt941aHseJQ4aEMVc1jGqQIoICJdQiBcz3JFS9/sWwXr0DpUY3OAgqbPuoHoCM7QWC17t4FCtoFetZJjx+EpPf/G/aShfIoqhjQ9KLXsvFNwRqJ/wZ1AnkxUbtkfjXbIYx8C5JpXedCJsJUyi4hDTXiDVEjPdZF+oGA+aDbiajg1K6Y5w27YTKvADpyP05kTBf64HvmU6fYU9P14bmf7V6jJ3TZiKCKEYI+HhRJ5YUQzpMh7aFAo5yYIBxJcxfKe8xTiaDHMmBHf65L9QOSycFdzro3yxNEkjS7bINtkjLjkhRXJyqRCOLknj+SZvFgP1pP1ar2NWzPWZGaT/JL1/gUgTpr4</latexit> <latexit sha1_base64="jG4q3CLuBbOdwxz2VYtq2xgJvfo=">ACD3icbZC7SgNBFIZn4y3G26qlzWAQLSTuiqIWQoiNjRDBmEASwuzkJBkye2HmrBCWfQbX8XGQsXW1s63cXIRNPrDwMd/zuHM+b1ICo2O82lZmbn5heyi7ml5ZXVNXt941aHseJQ4aEMVc1jGqQIoICJdQiBcz3JFS9/sWwXr0DpUY3OAgqbPuoHoCM7QWC17t4FCtoFetZJjx+EpPf/G/aShfIoqhjQ9KLXsvFNwRqJ/wZ1AnkxUbtkfjXbIYx8C5JpXedCJsJUyi4hDTXiDVEjPdZF+oGA+aDbiajg1K6Y5w27YTKvADpyP05kTBf64HvmU6fYU9P14bmf7V6jJ3TZiKCKEYI+HhRJ5YUQzpMh7aFAo5yYIBxJcxfKe8xTiaDHMmBHf65L9QOSycFdzro3yxNEkjS7bINtkjLjkhRXJyqRCOLknj+SZvFgP1pP1ar2NWzPWZGaT/JL1/gUgTpr4</latexit> Planck Mass Bias dz dV dM dn Z Z dM | y ` ( M, z ) | 2 C ` = dz • The key ingredient of the power spectrum is a profile of thermal pressure of electrons ˜ M 500 c = M 500 c, true /B 59

  17. Bolliet, Comis, EK, Macias-Pérez (2018) Inferred SZ Amplitude 2.6% measurement! Essentially cosmological model-independent 60

  18. <latexit sha1_base64="jG4q3CLuBbOdwxz2VYtq2xgJvfo=">ACD3icbZC7SgNBFIZn4y3G26qlzWAQLSTuiqIWQoiNjRDBmEASwuzkJBkye2HmrBCWfQbX8XGQsXW1s63cXIRNPrDwMd/zuHM+b1ICo2O82lZmbn5heyi7ml5ZXVNXt941aHseJQ4aEMVc1jGqQIoICJdQiBcz3JFS9/sWwXr0DpUY3OAgqbPuoHoCM7QWC17t4FCtoFetZJjx+EpPf/G/aShfIoqhjQ9KLXsvFNwRqJ/wZ1AnkxUbtkfjXbIYx8C5JpXedCJsJUyi4hDTXiDVEjPdZF+oGA+aDbiajg1K6Y5w27YTKvADpyP05kTBf64HvmU6fYU9P14bmf7V6jJ3TZiKCKEYI+HhRJ5YUQzpMh7aFAo5yYIBxJcxfKe8xTiaDHMmBHf65L9QOSycFdzro3yxNEkjS7bINtkjLjkhRXJyqRCOLknj+SZvFgP1pP1ar2NWzPWZGaT/JL1/gUgTpr4</latexit> <latexit sha1_base64="jG4q3CLuBbOdwxz2VYtq2xgJvfo=">ACD3icbZC7SgNBFIZn4y3G26qlzWAQLSTuiqIWQoiNjRDBmEASwuzkJBkye2HmrBCWfQbX8XGQsXW1s63cXIRNPrDwMd/zuHM+b1ICo2O82lZmbn5heyi7ml5ZXVNXt941aHseJQ4aEMVc1jGqQIoICJdQiBcz3JFS9/sWwXr0DpUY3OAgqbPuoHoCM7QWC17t4FCtoFetZJjx+EpPf/G/aShfIoqhjQ9KLXsvFNwRqJ/wZ1AnkxUbtkfjXbIYx8C5JpXedCJsJUyi4hDTXiDVEjPdZF+oGA+aDbiajg1K6Y5w27YTKvADpyP05kTBf64HvmU6fYU9P14bmf7V6jJ3TZiKCKEYI+HhRJ5YUQzpMh7aFAo5yYIBxJcxfKe8xTiaDHMmBHf65L9QOSycFdzro3yxNEkjS7bINtkjLjkhRXJyqRCOLknj+SZvFgP1pP1ar2NWzPWZGaT/JL1/gUgTpr4</latexit> <latexit sha1_base64="jG4q3CLuBbOdwxz2VYtq2xgJvfo=">ACD3icbZC7SgNBFIZn4y3G26qlzWAQLSTuiqIWQoiNjRDBmEASwuzkJBkye2HmrBCWfQbX8XGQsXW1s63cXIRNPrDwMd/zuHM+b1ICo2O82lZmbn5heyi7ml5ZXVNXt941aHseJQ4aEMVc1jGqQIoICJdQiBcz3JFS9/sWwXr0DpUY3OAgqbPuoHoCM7QWC17t4FCtoFetZJjx+EpPf/G/aShfIoqhjQ9KLXsvFNwRqJ/wZ1AnkxUbtkfjXbIYx8C5JpXedCJsJUyi4hDTXiDVEjPdZF+oGA+aDbiajg1K6Y5w27YTKvADpyP05kTBf64HvmU6fYU9P14bmf7V6jJ3TZiKCKEYI+HhRJ5YUQzpMh7aFAo5yYIBxJcxfKe8xTiaDHMmBHf65L9QOSycFdzro3yxNEkjS7bINtkjLjkhRXJyqRCOLknj+SZvFgP1pP1ar2NWzPWZGaT/JL1/gUgTpr4</latexit> <latexit sha1_base64="jG4q3CLuBbOdwxz2VYtq2xgJvfo=">ACD3icbZC7SgNBFIZn4y3G26qlzWAQLSTuiqIWQoiNjRDBmEASwuzkJBkye2HmrBCWfQbX8XGQsXW1s63cXIRNPrDwMd/zuHM+b1ICo2O82lZmbn5heyi7ml5ZXVNXt941aHseJQ4aEMVc1jGqQIoICJdQiBcz3JFS9/sWwXr0DpUY3OAgqbPuoHoCM7QWC17t4FCtoFetZJjx+EpPf/G/aShfIoqhjQ9KLXsvFNwRqJ/wZ1AnkxUbtkfjXbIYx8C5JpXedCJsJUyi4hDTXiDVEjPdZF+oGA+aDbiajg1K6Y5w27YTKvADpyP05kTBf64HvmU6fYU9P14bmf7V6jJ3TZiKCKEYI+HhRJ5YUQzpMh7aFAo5yYIBxJcxfKe8xTiaDHMmBHf65L9QOSycFdzro3yxNEkjS7bINtkjLjkhRXJyqRCOLknj+SZvFgP1pP1ar2NWzPWZGaT/JL1/gUgTpr4</latexit> Bolliet, Comis, EK, Macias-Pérez (2018) Inferred SZ Amplitude Mass Bias [B=(1–b) –1 ] ˜ M 500 c = M 500 c, true /B 61

  19. Makiya, Ando & EK (2018) Joint Analysis 2MASS Auto 62

  20. Makiya, Ando & EK (2018) Joint Analysis SZ Auto

  21. Makiya, Ando & EK (2018) Joint Analysis Cross!

  22. Full covariance including the trispectrum term 65

  23. Marignalise over EVERYTHING! 66

  24. Makiya, Ando & EK (2018) Mass-bias Consistency SZ Auto [for Planck TT+lowP+lensing] No obvious systematics for B from the SZ auto power spectrum alone SZ-2MASS Cross + 2MASS Auto • B = 1.54 ± 0.098 67

  25. Makiya, Ando & EK (2018) Mass-bias Consistency SZ Auto [for Planck TT+lowP+lensing] • B = 1.54 ± 0.098 • 1–b =B –1 = 0.649 ± 0.041 Similar value was inferred from the SZ cluster number counts: additional consistency SZ-2MASS Cross + 2MASS Auto 68

  26. Makiya, Ando & EK (2018) Mass Tomography Mass Dependence of SZ Auto 69

  27. Makiya, Ando & EK (2018) Mass Tomography Mass Dependence of Cross Cross is sensitive to less massive halos: We can use this to explore the mass bias as a function of mass! 70

  28. Makiya, Ando & EK (2018) Mass Tomography Pressure ~ (M/B) 2/3+ α p 71

  29. Summary, Part I • If you have two data sets, do 3x2pt • Not just auto alone, or cross alone. Many people do just autos or cross • 3x2pt analysis requires good knowledge of both data sets. Challenging but rewarding! Can your machine learn to do this too? • Novelty in our 3x2pt of SZ and galaxies • Parameter-dependent trispectrum in the full covariance • Marginalised over everything; deeper understanding of 2MASS auto and SZ auto spectra • Joint analysis revealed mass-(in)dependent of mass bias; and consistency of mass bias inferred from auto and cross • Useful (and rewarding)! 72

  30. Do I have 5 more minutes? • To be submitted on November 9 73

  31. “Internal Template” Cleaning • CMB = [ Map(140GHz) – α x Map(other freq) ] / [1– α ] Jean-François said this method does not assume anything about foregrounds, but it does: It assumes that the spectral property of foreground does not depend on sky directions 74

  32. Example: Synchrotron • Power-law index: δ T synch ~ ν β from WMAP 23 GHz and Haslam 408 MHz 75

  33. Katayama, EK (2011) “Tensor-to-scalar Ratio” Bias of r~2x10 –3 if β is assumed constant Parameter, r 76

  34. Katayama, EK (2011) “Tensor-to-scalar Ratio” Bias of r~2x10 –3 if β is assumed constant Parameter, r My first reaction: Ah, not bad at al! 77

  35. JAXA ESA + possible participations from USA, Canada, Europe 2025– [proposed] LiteBIRD 2027– [proposed] Target: δ r<0.001 (68%CL)

  36. JAXA ESA + possible participations from USA, Canada, Europe 2025– [proposed] LiteBIRD 2027– [proposed] Target: δ r<0.001 (68%CL) Gosh, we need to do better

  37. Ichiki, Kanai, Katayama, EK (to be submitted) Delta-map Method observed foreground foreground polarisation spectrum emission at [ p I : I th parameter] frequency ν * • Foreground spectrum varies spatially due to spatially varying spectral parameters p (e.g., β ) • Inference on p (n)? Time consuming/non-linear… • Spectral variations are actually not so large. (Bias in the tensor-to- scalar ratio parameter is only of order r~O(10 –3 )) • Let’s Taylor-expand!

  38. Ichiki, Kanai, Katayama, EK (to be submitted) Delta-map Method foreground mean spectrum fluctuation contribution • Key : the fluctuation part simply acts as an additional foreground component with spatially-uniform coefficients, D ν ,I • We can then form a linear combination of frequencies to remove both [Q f ,U f ] and δ p [Q f ,U f ]. Easy! • Long story short: this eliminates bias in r to negligible level. But… 81

  39. What am I doing? • This sounds a bit ad hoc • Sure, maybe it is unbiased, but is it minimum- variance? • What is the Bayesian foundation for this method? • I can answer that 82

  40. Bottom-up CMB Solutions • Simplest: Uniform spectral index. We need at least two frequencies to remove it. The CMB solution is This is nothing but the simplest template cleaning 83

  41. Bottom-up CMB Solutions • Spatially-varying power law. We need at least three frequencies to remove it. The CMB solution is 84

  42. Top-down Now, likelihood • m : Data (maps) • D : “mixing matrix” (frequency dependence of stuff in the sky) This depends on foreground parameters (we expand this to first order in perturbation) • s : Signal (CMB and foregrounds) • N : Noise covariance of data 85

  43. Top-down Maximum Likelihood When we have a uniform spectral index and two frequencies, this gives the internal template solution: 86

  44. Top-down Expanding D to 1st order 87

  45. Top-down Expanding D to 1st order When we have a spatially-varying power law and three frequencies, this gives what we saw already: 88

  46. Posterior • OK, these cleaned maps are ML solutions when the number of frequencies is equal to the number of components. Sweet. • What about the posterior? • Let’s derive it in a heuristic way 89

  47. Bottom-up Posterior [Simplest] • Square and average to get covariance and plug it into a Gaussian… –2ln(posterior[r, β |m]) = 90

  48. Top-down. We do it better now. Likelihood: Prior: [Flat on the mixing matrix] Marginalise over s CMB because all we care is its signal covariance S CMB 91

  49. Top-down Now what? What you do from now on will decide which foreground-removal method you are using. (Almost?) all foreground removal methods in the literature can be categorised by the way you go 92 from here. (Flavien Vansyngel’s thesis, 2014)

  50. Top-down Now what? We take the ML estimate of s f : 93

  51. Top-down Now what? We take the ML estimate of s f : And plug it into the top: 94

  52. Top-down Looks terrible. However… actually… when we have, e.g., a uniform spectral index and two frequencies… We take the ML estimate of s f : And plug it into the top: 95

  53. Top-down Looks terrible. However… actually… when we have, e.g., a uniform spectral index and two frequencies… where 96

  54. Ichiki, Kanai, Katayama, EK (to be submitted) That’s it! Summary: • We can account for spatially-varying foreground spectra and estimate the tensor-to-scalar ratio by • I talked only about a power-law synchrotron, but you can use this for any number of other components. All you need is the derivative of emission law as a function of spectral parameters. • For example… 97

  55. • And, we figured out how to account for polarised anomalous microwave emission (AME; spinning dust) and frequency decorrelation due to a superposition of varying spectra. If you are interested, wait for November!

  56. Back-up Slides

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend