hotrg study on partition function zeros in the p state
play

HOTRG study on partition function zeros in the p-state clock model - PowerPoint PPT Presentation

Tensor Network States: Algorithms and Applications @ NCCU, 4-6 Dec. 2019 HOTRG study on partition function zeros in the p-state clock model Dong-Hee Kim Dept. Physics and Photon Science Gwangju Institute of Science and Technology, Korea


  1. Tensor Network States: Algorithms and Applications @ NCCU, 4-6 Dec. 2019 HOTRG study on partition function zeros in the p-state clock model Dong-Hee Kim Dept. Physics and Photon Science Gwangju Institute of Science and Technology, Korea

  2. Outline 1. Fisher zero characterization of a phase transition — Numerical methods of computing the partition function — BKT transitions in the p-state clock model? 2. Monte Carlo: Numerical issues due to the stochastic nature [D.-H. Kim, PRE 96, 052130 (2017)] — How large systems can we consider for Fisher zeros? It depends on the type of phase transition: BKT has an issue. 3. Higher-Order Tensor Renormalization Group [S. Hong and D.-H. Kim, arXiv:1906.09036] — Characterization of the two BKT transitions in the p-state clock model — Finite-size scaling analysis: logarithmic corrections — Fisher-zero determination of the BKT transition temperature Department of Physics & Photon Science

  3. Emergent symmetry in the 2D p-state clock model Z(p) symmetry p-state clock model in square lattices X H p = − J cos( θ i − θ j ) θ = 2 π n : “clock” spin p h i,j i n = 0 , 1 , 2 , .., p − 1 p → ∞ B erezinskii- K osterlitz- T houless transition XY model: U(1) symmetry Emergent U(1) symmetry: BKT transition occurs even at finite p! Z(p) broken disordered 2 ≤ p ≤ 4 2nd order Z(p) broken disordered critical region x x 5 ≤ p < ∞ BKT BKT critical disordered x p → ∞ BKT Review: “40 years of BKT theory”, ed. by J. V. Jose Department of Physics & Photon Science

  4. Debates and remaining issues There are approximations involved! Z(p) broken disordered 2 ≤ p ≤ 4 2nd order Z(p) broken disordered critical region (Villain approximation, self-dual, …) x x 5 ≤ p < ∞ BKT BKT critical disordered ; see Borisenko et al. , PRE 83, 041120 (2011). x p → ∞ BKT review: “40 years of BKT theory”, ed. by J. V. Jose Numerical results with the “exact” p-state clock model: (mainly for the high-T transition) Baek/Minnhagen/Kim PRE 2010: ( helicity modulus , more rigorously) Lapilli/Pfeifer/Wexler, PRL 2006: Noop, IT IS the BKT for p = 6! ( helicity modulus ) but… It’s not the BKT transition for p < 8! Baek/Minnhagen PRE 2010: Hwang, PRE 80, 042103 (2009): p = 5 looks strange… Borisenko et al, PRE 2011. (Fisher zero study) ? Baek et al, PRE 2013. Indeed, it doesn’t look like BKT for p=6. Kumano et al, PRE 2013. Chatelain, JSM 2014: DMRG Department of Physics & Photon Science

  5. �� ��� ��� ��� � � ��� ��� ��� ��� ��� ���� � ���� ���� ���� ���� � � � ��� � ��� � �� ��� � ��� � � �� �� �� �� �� ��� � �� � � � � �� ���� ��� ���� � �� �� �� �� ��� ���� � � � � �� �� ���� � � �� ����� � � � � �� �� ���� ����� � � � � �� �� �� ��� ��� ��� ���� ���� ��� ���� ���� ���� ���� � ��� ��� ���� � � ��� ���� ���� ��� ���� � ���� � � ���� ��� ���� ��� ��� Fisher zero test on p=5 and 6 ? Hwang, PRE 80, 042103 (2009): the first Fisher zero calculation for p=6 Wang-Landau Monte Carlo calculations up to L=28 -2.8 said it looks like the second-order(!) transition. ln[Im(a 1 )] -3 -3.2 slope = 0.67(1) No, it’s BKT at p=6 (helicity modulus). -3.4 -3.4 -3.2 -3 -2.8 -2.6 -2.4 -ln[L] (b) Baek, Minnhagen, Kim, PRE 81, 063102 (2010) Baek, Minnhagen, PRE 82, 031102 (2010) Yes, it is BKT but with residual symmetry. 0.8 Kumano et al., PRE 88, 104427 (2013). L=8 BKT 32 0.6 [cf. Baek et al., PRE 88, 012125, (2013)] 128 512 0.4 Υ (d) 0.2 q=6 1.6 p=6 0 0.9 1 1.1 1.2 1.3 1.2 Chatelain, JSM P11022 (2014) T L=8 0.8 BKT(?) 32 0.8 0.6 128 512 Υ 0.4 0.4 p=5 0.2 (c) q=5 0 0 0.85 0.95 1.05 1.15 1.25 0.8 1 1.2 1.4 T

  6. Disagreements & Questions p-state clock model Helicity modulus Fisher zero 2nd. order ? p=6 BKT (WL calc. - Hwang 2009) BKT ? p=5 (with a new definition of helicity modulus) The only previous Fisher calculations in the p-state clock models: Hwang, PRE 80, 042103 (2009): p=6 , up to L=28 with W ang- L andau method It disagreed with the helicity modulus results but has not been re-examined. - Wang-Landau method gives very accurate results, usually. - L=28: too small. WL simulations can be done for much larger ones for p=6; - cf. Lee-Yang zeros in the XY model: up to L=256 with MC + histogram reweighting. Q. Are there any fundamental issues with the BKT transition? Department of Physics & Photon Science

  7. In this talk, … What was wrong with Fisher zeros at the BKT transitions? Monte Carlo noises become unbearable, very quickly. This is a “ feature ” of BKT; it’s unavoidable within MC . Can we improve the situation? Yes, with HOTRG , to some extent. Logarithmic subleading-order corrections are essential. Better finite-size-scaling analysis can be done. Department of Physics & Photon Science

  8. <latexit sha1_base64="M9TB/IMcCWYruLDz1GY61LE/xtw=">ACFXicbVDLSgMxFM3UV62vUZdugkUQsXWmCrosuHhop9QDsdMmnahiaZIckI7difcOvuHGhiFvBnX9j+lho64HA4Zx7uTkniBhV2nG+rdTC4tLySno1s7a+sblb+9UVBhLTMo4ZKGsBUgRgUpa6oZqUWSIB4wUg16lyO/ek+koqG40/2IeBx1BG1TjLSRfPv4ATY40l3Jk1syrA9814M5OPAxNIaiHF43k5x70hBx82jo21kn74wB54k7JVkwRcm3vxqtEMecCI0ZUqruOpH2EiQ1xYwM41YkQjhHuqQuqECcaK8ZJxqCA+M0oLtUJonNByrvzcSxJXq8BMjhKoW8k/ufVY92+8BIqolgTgSeH2jGDOoSjimCLSoI16xuCsKTmrxB3kURYmyIzpgR3NvI8qRTy7m+cHOWLRandaTBHtgHh8AF56AIrkAJlAEGj+AZvI368l6sd6tj8loypru7I/sD5/A5KnXc=</latexit> <latexit sha1_base64="NHtLA7FJzW0iyCzrxwOl/EROha0=">ACnicbVDLSsNAFJ3UV62vqks3o0VwY02qoMuCGwUXFewDkhgm02k7dGYSZiZCDV278VfcuFDErV/gzr9x0mah1QMXDufcy73hDGjStv2l1WYm19YXCoul1ZW19Y3yptbLRUlEpMmjlgkOyFShFBmpqRjqxJIiHjLTD4Xnmt+IVDQSN3oUE5+jvqA9ipE2UlDe9TjSA8nTSz6G7n3g+NBTlMOr2/TQOfJEMg7KFbtqTwD/EicnFZCjEZQ/vW6E06Exgwp5Tp2rP0USU0xI+OSlygSIzxEfeIaKhAnyk8nr4zhvlG6sBdJU0LDifpzIkVcqREPTWd2uJr1MvE/z01078xPqYgTQSeLuolDOoIZrnALpUEazYyBGFJza0QD5BEWJv0SiYEZ/blv6RVqzrH1dr1SaVez+Mogh2wBw6A05BHVyABmgCDB7AE3gBr9aj9Wy9We/T1oKVz2yDX7A+vgHrGpm/</latexit> Zeros of Partition Function: the “Fisher” zeros M. E. Fisher (1965) ( complex temperature , no external field) singular free energy! Phase transition: F = − k B T ln Z X At, Z ( β ) = g ( E ) exp[ − β E ] = 0 β = β c E No real solution exists in finite-size systems, but … Finite-Size-Scaling behavior of the “leading” Fisher zero as L increases Im[ z 1 ] ∼ L − 1 / ν | Re[ z 1 ] − z c | ∼ L − 1 / ν ∗ Re[ 𝞬 ] A tool to study a phase transition without an order parameter x 𝞬 c Lots of works have done. For a review, see 
 Bena et al., Int. J. Mod. Phys. B 19, 4269 (2005). Im[ 𝞬 ] Department of Physics & Photon Science

  9. Numerical strategy to compute Fisher zeros Given that we have g(E) … 1. solving polynomial equation from exact counting, histogram reweighing, for equally spaced discrete energies Wang-Landau, or … X X Y g n e − � n ✏ = ( z − z i ) g n z n Z = polynomial solver i n quick and easy, and works the best with exact g(E). 2. graphical solution + minimization Z ( β ) = Z R ( β ) + i Z I ( β ) slow, manual-geared, cumbersome, but allows error analysis! map of zeros map of zeros fine tuning find intersections minimize |Z| Department of Physics & Photon Science

  10. <latexit sha1_base64="Qd13sKsTAQaT+iRA1XhD7wxgPq8=">ACM3icbVDLSgNBEJz1GeMr6tHLYBDiJez6QI8BL+Ipiolidgmzk14dnH040xsIy/6TF3/EgyAeFPHqPzgbc9DEgoaiqpvuLj+RQqNtv1hT0zOzc/OlhfLi0vLKamVtva3jVHFo8VjG6spnGqSIoIUCJVwlCljoS7j074L/7IPSos4usBAl7IbiIRCM7QSN3KqYtC9iBzQ4a3nMnsOs+pC/ep6FM3UIz/dmquD8h28kmte76TdytVu24PQSeJMyJVMkKzW3lyezFPQ4iQS6Z1x7ET9DKmUHAJedlNSM37Eb6BgasRC0lw1/zum2UXo0iJWpCOlQ/T2RsVDrQeibzuJYPe4V4n9eJ8XgyMtElKQIEf9ZFKSYkyLAGlPKOAoB4YwroS5lfJbZpJCE3PZhOCMvzxJ2rt1Z69+cLZfbTRGcZTIJtkiNeKQ9IgJ6RJWoSTB/JM3si79Wi9Wh/W50/rlDWa2SB/YH19A1jvrIM=</latexit> Numerical strategy to compute Fisher zeros 1. solving polynomial equation X X Y g n e − � n ✏ = ( z − z i ) g n z n Z = i n 2. Graphical search + refinement Z R ( β ) X Find zeros. Z ( β R ) = P ( β R ; E ) cos( β I E ) Z ≡ Z ( β ) ˜ E Z ( β ) = Z R ( β ) + i Z I ( β ) Z ( β R ) Z I ( β ) X Find zeros. Z ( β R ) = P ( β R ; E ) sin( β I E ) E 0.5 We need the energy distribution at a real T! 0.4 Monte Carlo with histogram reweighting 0.3 Im[ β ] Wang-Landau sampling method 0.2 0.1 1. Search for the cross point 2. Minimize |Z| for refinement 0 0.7 0.75 0.8 0.85 0.9 Re[ β ] Department of Physics & Photon Science

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend