hilbert function and betti numbers of algebras with
play

Hilbert Function and Betti Numbers of Algebras with Lefschetz - PowerPoint PPT Presentation

Hilbert Function and Betti Numbers of Algebras with Lefschetz Property of Order m ALEXANDRU CONSTANTINESCU Dipartimento di Matematica, Universit` a di Genova 8-9 May 2008 Barcellona-Genova Workshop on Commutative Algebra and Applications 1


  1. Main result Theorem 1. If A is an Artinian homogeneous K -algebra with m-times the WLP, then h A is a m-times weak Lefschetz O-sequence. 2. For every m-times weak Lefschetz O-sequence h, there exists an Artinian homogeneous K -algebra with h A = h. 1. is easy: ◮ The unimodality follows from the natural grading of the algebra: if × ℓ 1 : A j − → A j +1 is surjective, then × ℓ 1 : A d − → A d +1 is surjective ∀ d ≥ j . ◮ A / ( ℓ 1 ) in an algebra with ( m − 1)-times the WLP and h A / ( ℓ 1 ) : 1 , h 1 − h 0 , . . . , h k − h k − 1 . 38

  2. 2. is not so easy.... 39

  3. Plan 40

  4. Plan Fix h a m -times weak Lefschetz O-sequence. 41

  5. Plan Fix h a m -times weak Lefschetz O-sequence. 1. We will construct inductively an ideal W m ( h ) of R 42

  6. Plan Fix h a m -times weak Lefschetz O-sequence. 1. We will construct inductively an ideal W m ( h ) of R such that R / W m ( h ) will be the algebra we are looking for. 43

  7. Plan Fix h a m -times weak Lefschetz O-sequence. 1. We will construct inductively an ideal W m ( h ) of R such that R / W m ( h ) will be the algebra we are looking for. 2. If R / I is an Artinian K -algebra with Hilbert function h and m -times the WLP then: 44

  8. Plan Fix h a m -times weak Lefschetz O-sequence. 1. We will construct inductively an ideal W m ( h ) of R such that R / W m ( h ) will be the algebra we are looking for. 2. If R / I is an Artinian K -algebra with Hilbert function h and m -times the WLP then: β ij ( R / I ) ≤ β ij ( R / W m ( h )) , ∀ i , j ≥ 0. 45

  9. Plan 3. Let I ⊂ R be an ideal such that R / I has Hilbert function h and m -times the weak Lefschetz property ( m ∈ N ). 46

  10. Plan 3. Let I ⊂ R be an ideal such that R / I has Hilbert function h and m -times the weak Lefschetz property ( m ∈ N ). T.F.A.E.: 47

  11. Plan 3. Let I ⊂ R be an ideal such that R / I has Hilbert function h and m -times the weak Lefschetz property ( m ∈ N ). T.F.A.E.: (a) R / I has maximal Betti numbers among K -algebras with the above properties. 48

  12. Plan 3. Let I ⊂ R be an ideal such that R / I has Hilbert function h and m -times the weak Lefschetz property ( m ∈ N ). T.F.A.E.: (a) R / I has maximal Betti numbers among K -algebras with the above properties. (b) I is componentwise linear and the ideal ρ n − m (Gin( I )) is Gotzmann in K [ x 1 , . . . , x n − m ]. 49

  13. Plan 3. Let I ⊂ R be an ideal such that R / I has Hilbert function h and m -times the weak Lefschetz property ( m ∈ N ). T.F.A.E.: (a) R / I has maximal Betti numbers among K -algebras with the above properties. (b) I is componentwise linear and the ideal ρ n − m (Gin( I )) is Gotzmann in K [ x 1 , . . . , x n − m ]. where: ρ i : K [ x 1 , . . . , x n ] − → K [ x 1 , . . . , x i ], with: � x j if j ≤ i ρ i ( x j ) = 0 if j > i . 50

  14. Plan 4. Let R / I be as above. 51

  15. Plan 4. Let R / I be as above. If ∃ q ∈ N such that: 52

  16. Plan 4. Let R / I be as above. If ∃ q ∈ N such that: β q ( R / I ) = β q ( R / W m ( h )) 53

  17. Plan 4. Let R / I be as above. If ∃ q ∈ N such that: β q ( R / I ) = β q ( R / W m ( h )) then: β i ( R / I ) = β i ( R / W m ( h )) for all i ≥ q . 54

  18. Plan 4. Let R / I be as above. If ∃ q ∈ N such that: β q ( R / I ) = β q ( R / W m ( h )) then: β i ( R / I ) = β i ( R / W m ( h )) for all i ≥ q . 5. Construct, starting from W m ( h ) and using a distraction matrix, another ideal I with : 55

  19. Plan 4. Let R / I be as above. If ∃ q ∈ N such that: β q ( R / I ) = β q ( R / W m ( h )) then: β i ( R / I ) = β i ( R / W m ( h )) for all i ≥ q . 5. Construct, starting from W m ( h ) and using a distraction matrix, another ideal I with : - the same Hilbert function 56

  20. Plan 4. Let R / I be as above. If ∃ q ∈ N such that: β q ( R / I ) = β q ( R / W m ( h )) then: β i ( R / I ) = β i ( R / W m ( h )) for all i ≥ q . 5. Construct, starting from W m ( h ) and using a distraction matrix, another ideal I with : - the same Hilbert function - the same Betti numbers 57

  21. Plan 4. Let R / I be as above. If ∃ q ∈ N such that: β q ( R / I ) = β q ( R / W m ( h )) then: β i ( R / I ) = β i ( R / W m ( h )) for all i ≥ q . 5. Construct, starting from W m ( h ) and using a distraction matrix, another ideal I with : - the same Hilbert function - the same Betti numbers - such that R / I still has m -times the WLP 58

  22. Plan 4. Let R / I be as above. If ∃ q ∈ N such that: β q ( R / I ) = β q ( R / W m ( h )) then: β i ( R / I ) = β i ( R / W m ( h )) for all i ≥ q . 5. Construct, starting from W m ( h ) and using a distraction matrix, another ideal I with : - the same Hilbert function - the same Betti numbers - such that R / I still has m -times the WLP - I ≤ k 1 is the ideal of finite set of rational points in P n − 1 . K 59

  23. The construction of W m ( h ) 60

  24. The construction of W m ( h ) For h : 1 = h 0 < h 1 < . . . < h k ≥ h k +1 ≥ . . . ≥ h s a m -times weak Lefschetz O-sequence, denote: 61

  25. The construction of W m ( h ) For h : 1 = h 0 < h 1 < . . . < h k ≥ h k +1 ≥ . . . ≥ h s a m -times weak Lefschetz O-sequence, denote: ∆ h := 1 , h 1 − h 0 , . . . , h k − h k − 1 . 62

  26. The construction of W m ( h ) For h : 1 = h 0 < h 1 < . . . < h k ≥ h k +1 ≥ . . . ≥ h s a m -times weak Lefschetz O-sequence, denote: ∆ h := 1 , h 1 − h 0 , . . . , h k − h k − 1 . Inductively, ∆ 1 h = ∆ h , 63

  27. The construction of W m ( h ) For h : 1 = h 0 < h 1 < . . . < h k ≥ h k +1 ≥ . . . ≥ h s a m -times weak Lefschetz O-sequence, denote: ∆ h := 1 , h 1 − h 0 , . . . , h k − h k − 1 . Inductively, ∆ 1 h = ∆ h , ∆ i h := ∆(∆ i − 1 h ) for i = 2 , . . . , m 64

  28. The construction of W m ( h ) For h : 1 = h 0 < h 1 < . . . < h k ≥ h k +1 ≥ . . . ≥ h s a m -times weak Lefschetz O-sequence, denote: ∆ h := 1 , h 1 − h 0 , . . . , h k − h k − 1 . Inductively, ∆ 1 h = ∆ h , ∆ i h := ∆(∆ i − 1 h ) for i = 2 , . . . , m ∆ i h is a ( m − i )-times weak Lefschetz O-sequence. 65

  29. The construction of W m ( h ) 66

  30. The construction of W m ( h ) The case m = 1 67

  31. The construction of W m ( h ) The case m = 1 Set n = h 1 68

  32. The construction of W m ( h ) The case m = 1 Set n = h 1 and define: I 0 :=Lex(∆ h ) ⊂ R ′ = K [ x 1 , . . . , x n − 1 ] . 69

  33. The construction of W m ( h ) The case m = 1 Set n = h 1 and define: I 0 :=Lex(∆ h ) ⊂ R ′ = K [ x 1 , . . . , x n − 1 ] . I 1 := I 0 · R ⊂ R . 70

  34. The construction of W m ( h ) The case m = 1 Set n = h 1 and define: I 0 :=Lex(∆ h ) ⊂ R ′ = K [ x 1 , . . . , x n − 1 ] . I 1 := I 0 · R ⊂ R . It is easy to see that: 71

  35. The construction of W m ( h ) The case m = 1 Set n = h 1 and define: I 0 :=Lex(∆ h ) ⊂ R ′ = K [ x 1 , . . . , x n − 1 ] . I 1 := I 0 · R ⊂ R . It is easy to see that: - the Hilbert function of R / I 1 is: 1 = h 0 , h 1 , . . . , h k − 1 , h k , h k , . . . , h k , . . . 72

  36. The construction of W m ( h ) The case m = 1 Set n = h 1 and define: I 0 :=Lex(∆ h ) ⊂ R ′ = K [ x 1 , . . . , x n − 1 ] . I 1 := I 0 · R ⊂ R . It is easy to see that: - the Hilbert function of R / I 1 is: 1 = h 0 , h 1 , . . . , h k − 1 , h k , h k , . . . , h k , . . . - ( x 1 , . . . , x n − 1 ) k +1 ⊆ I 1 73

  37. The construction of W m ( h ) Let d 0 > k be the smallest degree for which h k > h d 0 . 74

  38. The construction of W m ( h ) Let d 0 > k be the smallest degree for which h k > h d 0 . Let r 0 := h k − h d 0 . 75

  39. The construction of W m ( h ) Let d 0 > k be the smallest degree for which h k > h d 0 . Let r 0 := h k − h d 0 . Take M 1 , . . . , M r 0 ∈ R , the largest (in rev-lex order) r 0 monomials of degree d 0 NOT in I 1 . 76

  40. The construction of W m ( h ) Let d 0 > k be the smallest degree for which h k > h d 0 . Let r 0 := h k − h d 0 . Take M 1 , . . . , M r 0 ∈ R , the largest (in rev-lex order) r 0 monomials of degree d 0 NOT in I 1 . We define: I 2 := I 1 + ( M 1 , . . . , M r 0 ). 77

  41. The construction of W m ( h ) Let d 0 > k be the smallest degree for which h k > h d 0 . Let r 0 := h k − h d 0 . Take M 1 , . . . , M r 0 ∈ R , the largest (in rev-lex order) r 0 monomials of degree d 0 NOT in I 1 . We define: I 2 := I 1 + ( M 1 , . . . , M r 0 ). The Hilbert function of R / I 2 will be: 1 = h 0 , h 1 , . . . , h d 0 − 1 , h d 0 , h d 0 , . . . , h d 0 , . . . 78

  42. The construction of W m ( h ) Let d 0 > k be the smallest degree for which h k > h d 0 . Let r 0 := h k − h d 0 . Take M 1 , . . . , M r 0 ∈ R , the largest (in rev-lex order) r 0 monomials of degree d 0 NOT in I 1 . We define: I 2 := I 1 + ( M 1 , . . . , M r 0 ). The Hilbert function of R / I 2 will be: 1 = h 0 , h 1 , . . . , h d 0 − 1 , h d 0 , h d 0 , . . . , h d 0 , . . . Technical proof... 79

  43. The construction of W m ( h ) This ensures that we can proceed in the same way, that is by adding in each degree where it is needed the largest in rev-lex order monomials. 80

  44. The construction of W m ( h ) This ensures that we can proceed in the same way, that is by adding in each degree where it is needed the largest in rev-lex order monomials. After at most s − k steps we will obtain an ideal W 1 ( h ) such that: h R / W 1 ( h ) = h . 81

  45. Example Let h : 1 , 4 , 7 , 8 , 6 , 3 , 1 . Then we have ∆ h : 1 , 3 , 3 , 1. 82

  46. Example Let h : 1 , 4 , 7 , 8 , 6 , 3 , 1 . Then we have ∆ h : 1 , 3 , 3 , 1. R = K [ x , y , z , t ]. 83

  47. Example Let h : 1 , 4 , 7 , 8 , 6 , 3 , 1 . Then we have ∆ h : 1 , 3 , 3 , 1. R = K [ x , y , z , t ]. I 0 := Lex(∆ h ) = ( x 2 , xy , xz , y 3 , y 2 z , yz 2 , z 4 ) ⊂ K [ x , y , z ]. 84

  48. Example Let h : 1 , 4 , 7 , 8 , 6 , 3 , 1 . Then we have ∆ h : 1 , 3 , 3 , 1. R = K [ x , y , z , t ]. I 0 := Lex(∆ h ) = ( x 2 , xy , xz , y 3 , y 2 z , yz 2 , z 4 ) ⊂ K [ x , y , z ]. I 1 = I 0 · R 85

  49. Example Let h : 1 , 4 , 7 , 8 , 6 , 3 , 1 . Then we have ∆ h : 1 , 3 , 3 , 1. R = K [ x , y , z , t ]. I 0 := Lex(∆ h ) = ( x 2 , xy , xz , y 3 , y 2 z , yz 2 , z 4 ) ⊂ K [ x , y , z ]. I 1 = I 0 · R For d ≥ 4, the monomials in R \ I 1 are: z 3 t d − 3 , y 2 t d − 2 , yzt d − 2 , z 2 t d − 2 , xt d − 1 , yt d − 1 , zt d − 1 , t d 86

  50. Example Let h : 1 , 4 , 7 , 8 , 6 , 3 , 1 . Then we have ∆ h : 1 , 3 , 3 , 1. R = K [ x , y , z , t ]. I 0 := Lex(∆ h ) = ( x 2 , xy , xz , y 3 , y 2 z , yz 2 , z 4 ) ⊂ K [ x , y , z ]. I 1 = I 0 · R For d ≥ 4, the monomials in R \ I 1 are: z 3 t d − 3 , y 2 t d − 2 , yzt d − 2 , z 2 t d − 2 , xt d − 1 , yt d − 1 , zt d − 1 , t d Add to I 1 : 87

  51. Example Let h : 1 , 4 , 7 , 8 , 6 , 3 , 1 . Then we have ∆ h : 1 , 3 , 3 , 1. R = K [ x , y , z , t ]. I 0 := Lex(∆ h ) = ( x 2 , xy , xz , y 3 , y 2 z , yz 2 , z 4 ) ⊂ K [ x , y , z ]. I 1 = I 0 · R For d ≥ 4, the monomials in R \ I 1 are: z 3 t d − 3 , y 2 t d − 2 , yzt d − 2 , z 2 t d − 2 , xt d − 1 , yt d − 1 , zt d − 1 , t d Add to I 1 : z 3 t , y 2 t 2 , yzt 2 , z 2 t 2 , xt 3 , yt 3 , zt 3 , t 4 d = 4 : 88

  52. Example Let h : 1 , 4 , 7 , 8 , 6 , 3 , 1 . Then we have ∆ h : 1 , 3 , 3 , 1. R = K [ x , y , z , t ]. I 0 := Lex(∆ h ) = ( x 2 , xy , xz , y 3 , y 2 z , yz 2 , z 4 ) ⊂ K [ x , y , z ]. I 1 = I 0 · R For d ≥ 4, the monomials in R \ I 1 are: z 3 t d − 3 , y 2 t d − 2 , yzt d − 2 , z 2 t d − 2 , xt d − 1 , yt d − 1 , zt d − 1 , t d Add to I 1 : z 3 t , y 2 t 2 , yzt 2 , z 2 t 2 , xt 3 , yt 3 , zt 3 , t 4 d = 4 : z 3 t 2 , y 2 t 3 , yzt 3 , z 2 t 3 , xt 4 , yt 4 , zt 4 , t 5 d = 5 : 89

  53. Example Let h : 1 , 4 , 7 , 8 , 6 , 3 , 1 . Then we have ∆ h : 1 , 3 , 3 , 1. R = K [ x , y , z , t ]. I 0 := Lex(∆ h ) = ( x 2 , xy , xz , y 3 , y 2 z , yz 2 , z 4 ) ⊂ K [ x , y , z ]. I 1 = I 0 · R For d ≥ 4, the monomials in R \ I 1 are: z 3 t d − 3 , y 2 t d − 2 , yzt d − 2 , z 2 t d − 2 , xt d − 1 , yt d − 1 , zt d − 1 , t d Add to I 1 : z 3 t , y 2 t 2 , yzt 2 , z 2 t 2 , xt 3 , yt 3 , zt 3 , t 4 d = 4 : z 3 t 2 , y 2 t 3 , yzt 3 , z 2 t 3 , xt 4 , yt 4 , zt 4 , t 5 d = 5 : z 3 t 3 , y 2 t 4 , yzt 4 , z 2 t 4 , xt 5 , yt 5 , zt 5 , t 6 d = 6 : 90

  54. Example Let h : 1 , 4 , 7 , 8 , 6 , 3 , 1 . Then we have ∆ h : 1 , 3 , 3 , 1. R = K [ x , y , z , t ]. I 0 := Lex(∆ h ) = ( x 2 , xy , xz , y 3 , y 2 z , yz 2 , z 4 ) ⊂ K [ x , y , z ]. I 1 = I 0 · R For d ≥ 4, the monomials in R \ I 1 are: z 3 t d − 3 , y 2 t d − 2 , yzt d − 2 , z 2 t d − 2 , xt d − 1 , yt d − 1 , zt d − 1 , t d Add to I 1 : z 3 t , y 2 t 2 , yzt 2 , z 2 t 2 , xt 3 , yt 3 , zt 3 , t 4 d = 4 : z 3 t 2 , y 2 t 3 , yzt 3 , z 2 t 3 , xt 4 , yt 4 , zt 4 , t 5 d = 5 : z 3 t 3 , y 2 t 4 , yzt 4 , z 2 t 4 , xt 5 , yt 5 , zt 5 , t 6 d = 6 : z 3 t 4 , y 2 t 5 , yzt 5 , z 2 t 5 , xt 6 , yt 6 , zt 6 , t 7 d = 7 : 91

  55. Example Let h : 1 , 4 , 7 , 8 , 6 , 3 , 1 . Then we have ∆ h : 1 , 3 , 3 , 1. R = K [ x , y , z , t ]. I 0 := Lex(∆ h ) = ( x 2 , xy , xz , y 3 , y 2 z , yz 2 , z 4 ) ⊂ K [ x , y , z ]. I 1 = I 0 · R For d ≥ 4, the monomials in R \ I 1 are: z 3 t d − 3 , y 2 t d − 2 , yzt d − 2 , z 2 t d − 2 , xt d − 1 , yt d − 1 , zt d − 1 , t d Add to I 1 : z 3 t , y 2 t 2 , yzt 2 , z 2 t 2 , xt 3 , yt 3 , zt 3 , t 4 d = 4 : z 3 t 2 , y 2 t 3 , yzt 3 , z 2 t 3 , xt 4 , yt 4 , zt 4 , t 5 d = 5 : z 3 t 3 , y 2 t 4 , yzt 4 , z 2 t 4 , xt 5 , yt 5 , zt 5 , t 6 d = 6 : z 3 t 4 , y 2 t 5 , yzt 5 , z 2 t 5 , xt 6 , yt 6 , zt 6 , t 7 d = 7 : W 1 ( h ) = I 1 + ( z 3 t , y 2 t 2 , yzt 3 , z 2 t 3 , xt 4 , yt 5 , zt 5 , t 7 ). 92

  56. The construction of W m ( h ) In order to apply induction we also need to show that W 1 ( h ) is strongly stable. 93

  57. The construction of W m ( h ) In order to apply induction we also need to show that W 1 ( h ) is strongly stable. This is not difficult: 94

  58. The construction of W m ( h ) In order to apply induction we also need to show that W 1 ( h ) is strongly stable. This is not difficult: - For the monomial generators in the first n − 1 variables 95

  59. The construction of W m ( h ) In order to apply induction we also need to show that W 1 ( h ) is strongly stable. This is not difficult: - For the monomial generators in the first n − 1 variables it follows from the fact that Lex(∆ h ) is strongly stable. 96

  60. The construction of W m ( h ) In order to apply induction we also need to show that W 1 ( h ) is strongly stable. This is not difficult: - For the monomial generators in the first n − 1 variables it follows from the fact that Lex(∆ h ) is strongly stable. - For the monomial generators divisible by x n 97

  61. The construction of W m ( h ) In order to apply induction we also need to show that W 1 ( h ) is strongly stable. This is not difficult: - For the monomial generators in the first n − 1 variables it follows from the fact that Lex(∆ h ) is strongly stable. - For the monomial generators divisible by x n it follows from the fact that we chose the largest monomilas in rev-lex order as generators. 98

  62. The construction of W m ( h ) The general case 99

  63. The construction of W m ( h ) The general case Let m ∈ N , m ≥ 2. 100

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend