highly transparent
play

Highly Transparent and Highly Passivating Silicon Nitride for Solar - PowerPoint PPT Presentation

Highly Transparent and Highly Passivating Silicon Nitride for Solar Cells Yimao Wan The Australian National University (ANU) 23/10/2014 Outline Motivation Reviews of SiNx properties Process development Recombination studies


  1. Highly Transparent and Highly Passivating Silicon Nitride for Solar Cells Yimao Wan The Australian National University (ANU) 23/10/2014

  2. Outline • Motivation • Reviews of SiNx properties • Process development • Recombination studies – Planar – Texturing • Cell simulation and application 2

  3. Motivation Success of SiNx on silicon solar cells PECVD SiN x is incorporated into most laboratory and industrial silicon solar cells, fulfilling three functions: i. it comprises the antireflection coating; ii. it provides surface and bulk passivation; and iii. it forms a chemical barrier to protect underlying interfaces from the degrading effects of moisture, humidity and sodium ions. 3

  4. Motivation Success of SiNx on silicon solar cells PECVD SiN x is incorporated into most laboratory and industrial silicon solar cells, fulfilling three functions: i. it comprises the antireflection coating; ii. it provides surface and bulk passivation; and iii. it forms a chemical barrier to protect underlying interfaces from the degrading effects of moisture, humidity and sodium ions. 4

  5. Motivation Challenge of SiNx on silicon solar cells Planar undiffused FZ p -Si • Classic trend: SRV decreases as n increases, irrespective of deposition techniques. High absorption associated with Si-rich SiN x 5

  6. Review of SiNx properties Optics: refractive index 3.3 3.2 3.1 Refractive index n at 632 nm 3.0 Stoichiometric: Claassen et al. 1983 (LF direct, RBS) 2.9 Bustarret et al. 1988 (RF direct, ERD) N/Si = 4/3 2.8 Lenkeit et al. 2001 (  W remote, ERD) 2.7 2.6 Verlaan et al. 2009 (ERD) Hotwire 2.5  W remote 2.4 RF direct 2.3 LF direct 2.2 Si = 4 N 3.3 − 𝑜 632 𝑜 632 − 0.5 2.1 Calculated by Eq. (2.1) 3 2.0 (Bustarret et al. 1988) 1.9 1.8 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 N/Si ratio 6

  7. Review of SiNx properties Optics: extinction coefficient 0 10 Stoichiometric: -1 ) Absorption coefficient  at 360 nm (cm 6 10 N/Si = 4/3 Extinctin coefficient k at 360 nm -1 10 5 10 4 10 -2 10 Doshi et al. 1997 (RF direct) van Erven et al. 2008 (ETP)  Duttagupta et al. 2012 3 10 (  W remote inline) This work (  W/RF dual-mode) -3 10 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 N/Si ratio 7

  8. Review of SiNx properties Structures: [Si – N] 13 12 11 10 9 8 -3 ) 7 22 cm Stoichiometric: 6 N/Si = 4/3 [Si  N] (10 5 4 M ä ckel and L ü demann 2002 (RF direct) Cuevas et al. 2006 (  W remote) 3 Chen et al. 2007 (  W/RF dual-mode) van Erven et al. 2008 (ETP) This work (  W/RF dual-mode) 2 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 N/Si ratio 8

  9. Review of SiNx properties Structures: [Si – H] and [N – H] 100 [Si  H] Lauinger et al. 1998 (  W remote) Chen et al. 2006 (  W/RF dual-mode) -3 ) 21 cm Cuevas et al. 2006 (  W remote) 10 Verlaan et al. 2007 (Hotwire) van Erven et al. 2008 (ETP) [Si  H] or [N  H] (10 This work (  W/RF dual-mode) [N  H] Lauinger et al. 1998 (  W remote) van Erven et al. 2008 (ETP) 1 Chen et al. 2006 (  W/RF dual-mode) Cuevas et al. 2006 (  W remote) Stoichiometric: Verlaan et al. 2007 (Hotwire) N/Si = 4/3 This work (  W/RF dual-mode) 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 N/Si ratio 9

  10. Review of SiNx properties Structures: [Si – H] peak wavenumber H  Si  N 3 2220 -1 ) 2200 Si  H peak wavenumber (cm Increase of the back-bonded N atoms M ä ckel and L ü demann 2002 (RF direct) Cuevas et al. 2006 (  W remote) 2180 Verlaan et al. 2007 (Hotwire) H  Si  N 2 H 2160 Verlaan et al. 2009 Hotwire  W remote H  Si  N 2 Si 2140 RF direct LF direct Stoichiometric: 2120 N/Si = 4/3 This work (  W/RF dual-mode) H  Si  NSi 2 2100 H  Si  Si 3 2080 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 N/Si ratio 10

  11. Review of SiNx properties Electronics: insulator charge density Q eff 13 10 Hezel et al. 1984 (LF direct) Bagnoli et al. 1991 (RF direct) Landheer et al. 1995 & 1998 (ECR) 12 10 Garcia et al. 1998 (ECR) Dauwe 2004 (  W remote) -2 ) De Wolf et al. 2006 (LF direct) Q eff (cm Lelievre et al. 2009 ( LF direct) Lamers et al. 2013 (  W remote) This work (  W/RF dual-mode) 11 10 Temperature NH 3 :SiH 4 ratio Stoichiometric: Pressure  W plasma power N/Si = 4/3 10 10 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 N/Si ratio 11

  12. Review of SiNx properties Electronics: interface defect density D it 13 10 Hezel et al. 1984 (LF direct) 12 10 Landheer et al. 1998 (ECR) -2 ) Garcia et al. 1998 (ECR) -1 cm Lamers et al. 2013 (remote  W) D it (eV This work (  W/RF dual-mode) Temperature NH 3 :SiH 4 ratio 11 10 Pressure  W plasma power Stoichiometric: N/Si = 4/3 10 10 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 N/Si ratio 12

  13. Review of SiNx properties Conclusion 1 Irrespective of deposition techniques, (i) the bulk structural and optical properties are universally correlated to the N/Si ratio; and (ii) the electronic properties ( Q eff and D it ) appear independent of the N/Si ratio.  Promoting an opportunity of decoupling SiN x surface passivation and optical transmission properties; and therefore  Circumventing the trade-off between the two properties. 13

  14. Process development Methodology 1) Varying deposition parameters in Roth & Rau AK400: • NH 3 :SiH 4 ratio • Pressure • Temperature • Microwave plasma • RF plasma 2) Monitoring surface passivation  eff ( Δ n ) 3) Monitoring optical properties n & k 14

  15. Process development Results – NH 3 :SiH 4 ratio p -type 0.85   cm 3.0 1600 2.8 1400 -3 (  s) 2.6 n at 632 nm 1200 15 cm 2.4  eff at  n = 10 1000 2.2 800 2.0 600 1.8 400 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 NH 3 /SiH 4 gas flow ratio NH 3 /SiH 4 gas flow ratio 15

  16. Process development Results – Pressure and temperature 2.6 Refractive index n at 632 nm 2.5 -3 (  s) 3 10 2.4 15 cm 2.3 235 ºC  eff at  n = 10 290 ºC  cm 2.2 235 ºC  eff on p -0.85   cm 2 10 2.1 290 ºC  eff on p -0.85   cm 290 ºC  eff on n -0.47  2.0 1.9 1 1.8 10 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 Pressure (mbar) Pressure (mbar) 16

  17. Process development Results – S eff,UL vs. n 17

  18. Process development Surface passivation:  eff ( Δ n ) 18

  19. Process development Optical transmission • OPAL 2 • Random textured Si surface • Si thickness: 180 µm Cell under air Cell encapsulated beneath glass/EVA n 632nm S eff,UL Ref. J inc t SiNx J gen J Abs J relf J Inc t SiNx J gen J Abs J relf (cm/s) (nm) (nm) (mA/cm 2 ) (mA/cm 2 ) 2.5 7.2 58 38.98 1.45 0.83 40 37.58 0.69 0.42 DuttaGupta et al. 41.27 38.69 1.87 1.6 80 40.38 0.21 0.67 88 38.24 0.11 0.34 This work at 290 ˚C Δ J 1.40 - 1.24 - 0.16 Δ J 0.66 - 0.58 - 0.08 19

  20. Process development Thermal stability -3 (cm/s) 4 10 15 cm 3 10 As-deposited Post RTA S eff,UL at  n = 10 2 10 • Poor thermal stability 1 10 0 10 • Correlated to [Si – N] S eff,UL-Post RTA / S eff,UL-As deposited 3 10 • Further studies required 2 10 1 10 5 6 7 8 9 10 22 cm -3 ) [Si-N] (10 RTA 800 ° C for 5 seconds 20

  21. Process development Conclusion 2 A single SiN x layer can provide both  high passivation of c-Si surface  high transmission at short wavelength 21

  22. Recombination studies – planar Methodology 1) Extracting S eff,UL ( Δ n ) from measured 𝜐 eff ( Δ n ) 2) Probing electronic properties by C-V measurements: D it and Q eff 3) Modeling S eff,UL ( Δ n ) 22

  23. Recombination studies – planar Extracting S eff,UL ( Δ n ) 3 10 𝑇 eff (∆𝑜) = 𝑥 1 1 Lauinger et al. - 0.7  cm (1996) 2 ( 𝜐 eff (∆𝑜) − 𝜐 bulk (∆𝑜)) Schmidt and Kerr - 1.0  cm (2001) Kerr and Cuevas - 1.0  cm (2002) 𝑥 : Si wafer thickness DuttaGupta et al. - 1.5  cm (2011) 𝜐 eff (∆𝑜) : effective minority carrier This work 0.85  cm - 235 ºC 2 10 lifetime This work 0.85  cm - 290 ºC -1 ) 𝜐 bulk (∆𝑜) : Si bulk lifetime S eff,UL (cm s 1 10 • Similar injection-level dependence FZ p -type {100} c-Si 0 10 • Lowest Auger-corrected S eff,UL 12 13 14 15 16 17 10 10 10 10 10 10 (1.6 cm/s) -3 ) Excess carrier density  n (cm 23

  24. Recombination studies – planar Probing electronics: D it , Q eff and  n/p 3.0 × 10 11 D it-Midgap (cm -2 eV -1 ) 5.6 × 10 11 Q eff (cm -2 ) Extracted from quasi-static (QS) and high-frequency (HF) capacitance- voltage (C-V) measurements Schmidt et al. (1997) 24

  25. Recombination studies – planar Modeling S eff,UL ( Δ n ) 5 10 Notes for the S eff,UL ( Δ n ) modeling: FZ p -type {100} c-Si • Adapting the latest Si intrinsic bulk Defect C lifetime model — Richter et al. (2012) 4 10 • Assuming a single defect at a single energy level (midgap) 3 10 -1 ) S eff,UL (cm s Assuming  n &  p saturate and • constant for the unmeasured gap 2 10 regions B • Defect A or B (or both) is likely to 1 10 dominate the recombination at the Si – A SiN x interface. 0 10 • Defect C is excluded. 12 13 14 15 16 17 10 10 10 10 10 10 -3 ) Excess carrier density  n (cm 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend