hidden dynamical symmetries in ageing phenomena
play

Hidden dynamical symmetries in ageing phenomena Malte Henkel - PowerPoint PPT Presentation

Hidden dynamical symmetries in ageing phenomena Malte Henkel Laboratoire de Physique de Mat eriaux Universit e Henri Poincar e Nancy I, France collaborators: M. Pleimling F. Baumann, X. Durang, S.B. Dutta, M. Ebbinghaus, H.


  1. Hidden dynamical symmetries in ageing phenomena Malte Henkel Laboratoire de Physique de Mat´ eriaux Universit´ e Henri Poincar´ e Nancy I, France collaborators: M. Pleimling F. Baumann, X. Durang, S.B. Dutta, M. Ebbinghaus, H. Grandclaude reviews: J. Phys. Cond. Matt. 19 , 065101 (2007); J. Stat. Mech. P07015 (2007) KIAS Seoul, 1 st of July 2008

  2. Contents : I. Ageing phenomena physical ageing ; scaling behaviour and exponents II. Hidden dynamical symmetries Local scaling with z = 2 ; stochastic field-theory ; computation of response and correlation functions III. Local scale-invariance for z � = 2 Mass terms ; integrability ; test through responses and correlators in several models IV. Test case : 2 D disordered Ising model V. Conclusions

  3. I. Ageing phenomena why do materials ‘look old’ after some time ? which (reversible) microscopic processes lead to such macroscopic effects ? physical ageing known since historical (or prehistorical) times systematic studies first in glassy systems Struik 78 a priori behaviour should depend on entire prehistory but evidence for reproducible and universal behaviour for better conceptual understanding : study ageing first in simpler systems (i.e. disordered ferromagnets) ageing : defining characteristics and symmetry properties : 1 slow dynamics (i.e. non-exponential relaxation) 2 breaking of time-translation invariance 3 dynamical scaling new evidence for larger, local scaling symmetries

  4. Struik 78 1. observe slow relaxation after quenching PVC from melt to low T 2. creep curves depend on waiting time t e and creep time t 3. find master curve for all ( t , t e ) − → dynamical scaling → three defining properties of physical ageing

  5. master curves of distinct materials are identical − → Universality ! good for theorists . . . Struik 78 conceptual confirmation in phase-ordering : Allen-Cahn equation

  6. easier to study : ageing in simple systems without disorder consider a simple magnet (ferromagnet, i.e. Ising model) 1 prepare system initially at high temperature T ≫ T c > 0 2 quench to temperature T < T c (or T = T c ) → non-equilibrium state 3 fix T and observe dynamics Bray 94 competition : at least 2 equivalent ground states local fields lead to rapid local ordering no global order, relaxation time ∞ formation of ordered domains, of linear size L = L ( t ) ∼ t 1 / z dynamical exponent z universal Allen-Cahn equation v = − ( d − 1) K for domain walls

  7. Snapshots of spin configurations in several 2 D / 3 D Ising models quenched to T < T c , for three different times t = 25 , 100 , 225. Left : pure Middle : disordered Right : 3 D spin glass

  8. Scaling behaviour & exponents single relevant time-dependent length scale L ( t ) ∼ t 1 / z Bray 94, Janssen et al. 92, Cugliandolo & Kurchan 90s, Godr` eche & Luck 00, . . . � t � r � φ ( t , r ) φ ( s , 0 ) � = s − b f C correlator C ( t , s ; r ) := s , ( t − s ) 1 / z � � t � � δ � φ ( t , r ) � r � = s − 1 − a f R response R ( t , s ; r ) := s , � ( t − s ) 1 / z δ h ( s , 0 ) h =0 Surprise : scaling behaviour far away from the critical point, in the entire phase T < T c ?

  9. How to understand these scaling forms → mean-field Langevin eq. for order parameter m ( t ) d m ( t ) = 3 λ 2 m ( t ) − m ( t ) 3 + η ( t ) , � η ( t ) η ( s ) � = 2 T δ ( t − s ) d t ole parameter λ 2 : contrˆ (1) λ 2 > 0 : T < T c , (2) λ 2 = 0 : T = T c , (3) λ 2 < 0 : T > T c two-time observables : response R ( t , s ), correlation C ( t , s ) � � R ( t , s ) = δ � m ( t ) � = 1 � 2 T � m ( t ) η ( s ) � , C ( t , s ) = � m ( t ) m ( s ) � � δ h ( s ) h =0 mean-field equation of motion : � � λ 2 − v ( t ) ∂ t R ( t , s ) = 3 R ( t , s ) + δ ( t − s ) � � λ 2 − v ( s ) ∂ s C ( t , s ) = 3 C ( t , s ) + 2 TR ( t , s ) � � λ 2 − v ( t ) with variance v ( t ) = � m ( t ) 2 � , v ( t ) = 6 ˙ v ( t )

  10. se λ 2 ≥ 0 : fluctuations persist se λ 2 < 0 : fluctuations disappear in the long-time limit t , s → ∞ : ( t > s )   ; λ 2 > 0  2 min( t , s ) 1   � � ; λ 2 = 0 s / t R ( t , s ) ≃ s / t ; C ( t , s ) ≃ T s   ; λ 2 < 0  (3 | λ 2 | ) e − 3 | λ 2 | | t − s | e − 3 | λ 2 | ( t − s ) 1 fluctuation-dissipation ratio measures distance from equilibrium  ; λ 2 > 0 1 / 2 + O ( e − 6 λ 2 s )  X ( t , s ) = TR ( t , s ) ; λ 2 = 0 ∂ s C ( t , s ) ≃ 2 / 3  ; λ 2 < 0 1 + O ( e −| λ 2 | | t − s | ) relaxation far from equilibrium, when X � = 1, if λ 2 ≥ 0 ( T ≤ T c )

  11. Consequences : If λ 2 > 0 : free random walk, the system never reaches equilibrium ! If λ 2 = 0 : slow relaxation, because of critical fluctuations In both situations : observe 1 slow dynamics (non-exponential relaxation) 2 time-translation-invariance broken 3 dynamical scaling behaviour − → the conditions for physical ageing are all satisfied if T ≤ T c − → the system remains out of equilibrium If λ 2 < 0 : rapid relaxation, with finite relaxation time τ rel ∼ 1 / | λ 2 | , towards unique equilibrium state

  12. Return to scaling forms : � t � r s − b f C correlator C ( t , s ; r ) = s , ( t − s ) 1 / z � t � r s − 1 − a f R response R ( t , s ; r ) = s , ( t − s ) 1 / z values of exponents : equilibrium correlator → classes S and L � exp( −| r | /ξ ) � class S � a = 1 / z C eq ( r ) ∼ = ⇒ = ⇒ | r | − ( d − 2+ η ) class L a = ( d − 2 + η ) / z if T < T c : z = 2 and b = 0 if T = T c : z = z c and b = a for y → ∞ : f C , R ( y , 0 ) ∼ y − λ C , R / z , λ C , R independent exponents Question : general arguments to find form of scaling functions ?

  13. Tests of dynamical scaling : 3 D Ising model, T < T c dynamical scaling no time-translation invariance C ( t , s ) : autocorrelation function, quenched to T < T c scaling regime : t , s ≫ τ micro and t − s ≫ τ micro

  14. Fluctuation-dissipation theorem Ageing goes on far from equilibrium ! No fluctuation-dissipation theorem : R ( t , s ; r ) � = T ∂ C ( t , s ; r ) /∂ s rather use fluctuation-dissipation ratio to measure distance from equilibrium Cugliandolo, Kurchan, Parisi 94 X ( t , s ) := TR ( t , s ) ∂ s C ( t , s ) At equilibrium : X ( t , s ) = 1. Otherwise, X ( t , s ) � = 1. Experimentalists often use effective temperature T eff := T / X ( t , s ) T eff is not a thermodynamic ensemble quantity, since it may depend on the observable Calabrese & Gambassi 04

  15. Experimental examples for the breaking of the FDT I spin glass CdCr 1 . 7 In 0 . 3 S 4 , quenched to T / T c = 0 . 8 Herisson & Ocio 02 � t trace susceptibility χ ZFC ( t , s ) = s d u R ( t , u ) over against C ( t , s ) sub-ageing corretions to scaling ? for C ≈ 1, straight line with slope − 1 / T in χ − C plot

  16. Experimental examples for the breaking of the FDT II mechanical response of a colloidal suspension of PMMA measure diffusive motion and drift (under an external perpendicular field – 2 D sample) find subageing with truly small µ ∼ 0 . 48 Makse et al 06

  17. II. Hidden dynamical symmetries A) Langevin equation (model A of Hohenberg & Halperin 77 ) 2 M ∂φ ∂ t = ∆ φ − δ V [ φ ] + η δφ order-parameter φ ( t , r ) non-conserved M : kinetic co´ efficient V : Landau-Ginsbourg potential η : gaussian noise, cantered and with variance � η ( t , r ) η ( t ′ , r ′ ) � = 2 T δ ( t − t ′ ) δ ( r − r ′ ) fully disordered initial conditions (centred gaussian noise) B) master equation e.g. Glauber 63 i.e. kinetic Ising model with heat-bath dynamics random initial state → relaxation towards equilibrium stationary states

  18. Local scaling with z = 2 → LSI Question : extended dynamical scaling for given z � = 1 ? MH 92, 94, 02 motivation : 1. conformal invariance in equilibrium critical phenomena, z = 1 2. Schr¨ odinger-invariance of simple diffusion, z = 2 Lie 1881, Niederer 72, Hagen 71, Kastrup 68 γ t + δ , r �→ R r + v t + a α t t �→ , αδ = 1 γ t + δ Lie algebra age 1 := � X 1 , 0 , Y ± 1 / 2 , M 0 � generators : (no TTI !) � x � X n = − t n +1 ∂ t − n + 1 t n r ∂ r − n ( n + 1) M t n − 1 r 2 − t n 2( n + 1) + n ξ 2 4 � � m + 1 Y m = − t m +1 / 2 ∂ r − M t m − 1 / 2 r 2 M n = − t n M also contains ‘phase changes’ in the wave function ! (projective)

  19. commutators in root diagramme odinger operator : S = 2 M ∂ t − ∂ 2 Schr¨ r odinger equation : S φ = 0 Schr¨ Schr¨ odinger-invariance : [ S , X 0 ] = −S , [ S , Y − 1 / 2 ] = 0 and [ S , X 1 ] = − 2 t S + 2 M ( x + ξ − 1 2 ) = ⇒ if x + ξ = 1 / 2, solutions of the 1 D Schr¨ odinger/diffusion equation mapped by age 1 onto another solution → local dynamical symmetry co-variant two-point function R 12 := � φ 1 ( t , r ) φ 2 ( s , 0 ) � : X R 12 = 0 with X ∈ age d ⊂ conf d +2 MH 94, MH & Unterberger 03, MH et al 06 � � R 12 ∼ s − 1 − a � t � 1+ a ′ − λ R / 2 � t � − 1 − a ′ r 2 −M 1 s − 1 exp 2 t − s s , a ′ − a = ξ 1 + ξ 2 , λ R = 2( x 1 + ξ 1 ), M 1 + M 2 = 0 with 1 + a = x 1 + x 2 2 causality condition t > s : R 12 is a response function ! reproduced in some ageing systems with z = 2 WHY ? ?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend